
DB2® IBM Informix

IBM Informix JDBC Driver Programmer’s Guide

Version 3.0

G251-2290-00

���

DB2® IBM Informix

IBM Informix JDBC Driver Programmer’s Guide

Version 3.0

G251-2290-00

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page G-1.

First Edition (December 2004)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by

copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . ix

IBM Informix Java Documentation . x

About This Manual . xi

Organization of This Manual . xi

Supplementary JDBC Documentation . xii

Material Not Covered . xiii

Types of Users . xiv

Software Dependencies . xiv

Assumptions About Your Locale . xiv

New Features . xv

Features Added for IBM Informix JDBC Driver, Version 2.21.JC5 xvi

Features New to IBM Informix JDBC Driver, Version 2.21.JC4 xvii

Documentation Conventions . xix

Typographical Conventions . xix

Feature, Product, and Platform . xix

Syntax Diagrams . xx

Example Code Conventions . xxiv

Additional Documentation . xxv

Installation Guides . xxv

Online Notes . xxv

Informix Error Messages . xxvii

Manuals . xxviii

Online Help . xxviii

Accessibility . xxviii

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xxviii

Compliance with Industry Standards . xxxi

IBM Welcomes Your Comments . xxxii

Chapter 1. Getting Started . 1-1

What Is JDBC? . 1-1

What Is a JDBC Driver? . 1-2

Overview of IBM Informix JDBC Driver . 1-3

Classes Implemented in IBM Informix JDBC Driver 1-3

Files in IBM Informix JDBC Driver . 1-5

Client- and Server-Side JDBC Drivers . 1-7

Installing the Driver . 1-7

Installing in Graphical Mode . 1-8

Installing in Console Mode . 1-9

Installing in Silent Mode . 1-9

Logging Install Events . 1-10

Using the Driver in an Application . 1-10

Using the Driver in an Applet . 1-12

Uninstalling the Driver . 1-13

Chapter 2. Connecting to the Database . 2-1

© Copyright IBM Corp. 1996, 2004 iii

Loading IBM Informix JDBC Driver . 2-3

Using a DataSource Object . 2-3

Using the DriverManager.getConnection() Method 2-6

Format of Database URLs . 2-7

Database Versus Database Server Connections 2-10

Specifying Properties . 2-12

Using Informix Environment Variables . 2-13

Dynamically Reading the Informix sqlhosts File 2-20

Connection Property Syntax . 2-21

Administration Requirements . 2-22

Utilities to Update the LDAP Server with sqlhosts Data 2-22

Using High-Availability Data Replication . 2-23

Secondary Server Connection Properties . 2-24

Checking for Read-Only Status . 2-24

Retrying Connections . 2-25

Using an HTTP Proxy Server . 2-27

Configuring Your Environment to Use a Proxy Server 2-27

Using the Proxy with an LDAP Server . 2-30

Specifying sqlhosts File Lookup . 2-31

Using Other Multitier Solutions . 2-31

Encryption Options . 2-32

Using the JCE Security Package . 2-32

Using Password Encryption . 2-33

Using Network Encryption . 2-33

PAM Authentication Method . 2-36

Using PAM in JDBC . 2-38

Closing the Connection . 2-38

Chapter 3. Performing Database Operations 3-1

Querying the Database . 3-2

Example of Sending a Query to an Informix Database 3-2

Using Result Sets . 3-3

Deallocating Resources . 3-3

Executing Across Threads . 3-4

Using Scroll Cursors . 3-4

Using Hold Cursors . 3-5

Updating the Database . 3-5

Performing Batch Updates . 3-6

Performing Bulk Inserts . 3-7

Parameters, Escape Syntax, and Unsupported Methods 3-7

Using CallableStatement OUT Parameters 3-7

JDBC Support for DESCRIBE INPUT . 3-14

Using Escape Syntax . 3-16

Unsupported Methods and Methods that Behave Differently 3-16

Handling Transactions . 3-18

Handling Errors . 3-19

Handling Errors With the SQLException Class 3-19

Retrieving the Syntax Error Offset . 3-20

Handling Errors with the com.informix.jdbc.Message Class 3-21

Accessing Database Metadata . 3-21

iv IBM Informix JDBC Driver Programmer’s Guide

Other Informix Extensions to the JDBC API . 3-23

Using the Auto Free Feature . 3-23

Obtaining Driver Version Information . 3-24

Storing and Retrieving XML Documents . 3-24

Setting Up Your Environment to Use XML Methods 3-25

Inserting Data . 3-27

Retrieving Data . 3-28

Inserting Data Examples . 3-29

Retrieving Data Examples . 3-30

Chapter 4. Working With Informix Types . 4-1

Distinct Data Types . 4-2

Inserting Data Examples . 4-2

Retrieving Data Example . 4-4

Unsupported Methods . 4-5

BYTE and TEXT Data Types . 4-5

Caching Large Objects . 4-5

Example: Inserting or Updating Data . 4-6

Example: Selecting Data . 4-7

SERIAL and SERIAL8 Data Types . 4-9

INTERVAL Data Type . 4-10

The Interval Class . 4-10

The IntervalYM Class . 4-12

The IntervalDF Class . 4-14

Interval Example . 4-16

Collections and Arrays . 4-16

Collection Examples . 4-17

Array Example . 4-19

Named and Unnamed Rows . 4-20

Interval and Collection Support . 4-21

Unsupported Methods . 4-21

Using the SQLData Interface . 4-22

Using the Struct Interface . 4-25

Using the ClassGenerator Utility . 4-30

Caching Type Information . 4-32

Smart Large Object Data Types . 4-33

Smart Large Objects in the Database Server 4-34

Smart Large Objects in a Client Application 4-35

Performing Operations on Smart Large Objects 4-41

Working with Storage Characteristics . 4-48

Working with Status Characteristics . 4-59

Working with Locks . 4-60

Caching Large Objects . 4-62

Smart Large Object Examples . 4-62

Chapter 5. Working with Opaque Types . 5-1

Using the IfmxUDTSQLInput Interface . 5-3

Reading Data . 5-3

Positioning in the Data Stream . 5-4

Setting or Obtaining Data Attributes . 5-4

Contents v

Using the IfmxUDTSQLOutput Interface . 5-4

Mapping Opaque Data Types . 5-5

Caching Type Information . 5-5

Unsupported Methods . 5-6

Creating Opaque Types and UDRs . 5-6

Overview of Creating Opaque Types and UDRs 5-6

Preparing to Create Opaque Types and UDRs 5-8

Steps to Creating Opaque Types . 5-8

Steps to Creating UDRs . 5-11

Requirements for the Java Class . 5-12

SQL Names . 5-13

Specifying Characteristics for an Opaque Type 5-13

Creating the JAR and Class Files . 5-17

Sending the Class Definition to the Database Server 5-18

Creating an Opaque Type from Existing Code 5-19

Removing Opaque Types and JAR Files . 5-21

Creating UDRs . 5-22

Removing UDRs and JAR Files . 5-23

Obtaining Information About Opaque Types and UDRs 5-24

Executing in a Transaction . 5-25

Examples . 5-26

Class Definition . 5-26

Inserting Data . 5-27

Retrieving Data . 5-28

Using Smart Large Objects Within an Opaque Type 5-29

Creating an Opaque Type from an Existing Java Class with UDTManager 5-31

Creating an Opaque Type Without an Existing Java Class 5-39

Creating UDRs with UDRManager . 5-42

Chapter 6. Internationalization and Date Formats 6-1

Support for JDK and Internationalization . 6-2

Support for IBM Informix GLS Variables . 6-2

Support for DATE End-User Formats . 6-3

GL_DATE Variable . 6-4

DBDATE Variable . 6-6

DBCENTURY Variable . 6-8

Precedence Rules for End-User Formats . 6-10

Support for Code-Set Conversion . 6-11

Unicode to Database Code Set . 6-11

Unicode to Client Code Set . 6-13

Connecting to a Database with Non-ASCII Characters 6-14

Code-Set Conversion for TEXT Data Types 6-14

User-Defined Locales . 6-16

Support for Localized Error Messages . 6-18

Chapter 7. Tuning and Troubleshooting . 7-1

Debugging Your JDBC API Program . 7-1

Managing Performance . 7-1

The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables 7-2

Managing Memory for Large Objects . 7-2

vi IBM Informix JDBC Driver Programmer’s Guide

Reducing Network Traffic . 7-4

Using Bulk Inserts . 7-5

Using a Connection Pool . 7-5

Appendix A. Sample Code Files . A-1

Appendix B. DataSource Extensions . B-1

Appendix C. Mapping Data Types . C-1

Appendix D. Accessibility . D-1

Glossary . E-1

Error Messages . F-1

Notices . G-1

Index . X-1

Contents vii

viii IBM Informix JDBC Driver Programmer’s Guide

Introduction

IBM Informix Java Documentation . x

About This Manual . xi

Organization of This Manual . xi

Supplementary JDBC Documentation . xii

Material Not Covered . xiii

Types of Users . xiv

Software Dependencies . xiv

Assumptions About Your Locale . xiv

New Features . xv

Features Added for IBM Informix JDBC Driver, Version 2.21.JC5 xvi

Features New to IBM Informix JDBC Driver, Version 2.21.JC4 xvii

Documentation Conventions . xix

Typographical Conventions . xix

Feature, Product, and Platform . xix

Syntax Diagrams . xx

How to Read a Command-Line Syntax Diagram xxii

Keywords and Punctuation . xxiii

Identifiers and Names . xxiii

Example Code Conventions . xxiv

Additional Documentation . xxv

Installation Guides . xxv

Online Notes . xxv

Locating Online Notes . xxvi

Online Notes Filenames . xxvii

Informix Error Messages . xxvii

Manuals . xxviii

Online Manuals . xxviii

Printed Manuals . xxviii

Online Help . xxviii

Accessibility . xxviii

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xxviii

Compliance with Industry Standards . xxxi

IBM Welcomes Your Comments . xxxii

In This Introduction

This introduction provides:

v An overview of IBM Informix JavaTM documentation

v An overview of the information in this manual

v A description of the conventions used in this manual

v A list of new features

© Copyright IBM Corp. 1996, 2004 ix

IBM Informix Java Documentation

The following table presents common Java programming tasks and tells where

to find their documentation.

 To Do This Consult This Document

Set up your environment to run a Java application

Install the JDK IBM Informix: J/Foundation Developer's Guide

Sun Microsystems Web site also has documentation.

Install a Java-enabled server IBM Informix: J/Foundation Developer's Guide

Configure your environment IBM Informix: J/Foundation Developer's Guide

Install a JDBC client IBM Informix: JDBC Driver Programmer's Guide

(this manual)

Make sure a client on a different

computer can communicate

with the database server

(connectivity)

IBM Informix: Dynamic Server Administrator's Guide

Perform basic database operations

From a client, using JDBC API IBM Informix: JDBC Driver Programmer's Guide

(this manual)

From a client, using embedded

SQL

IBM Informix: Embedded SQLJ User's Guide

In the database server, using

JDBC and SQL

IBM Informix: J/Foundation Developer's Guide

Create opaque and distinct types

Understand concepts IBM Informix: User-Defined Routines and Data Types

Developer's Guide

Create using the client JDBC

driver

IBM Informix: JDBC Driver Programmer's Guide

(this manual) For differences between server and

client JDBC drivers, see the JDBC Driver chapter in

IBM Informix: J/Foundation Developer's Guide.

Create in the database server

(using the built-in server JDBC

driver)

IBM Informix: DataBlade Developer’s Kit User's Guide

IBM Informix: J/Foundation Developer's Guide

Work with smart large objects IBM Informix: JDBC Driver Programmer's Guide

(this manual)

Store and retrieve XML

documents

IBM Informix: JDBC Driver Programmer's Guide

(this manual)

Use IBM Informix GLS for

internationalization

IBM Informix: JDBC Driver Programmer's Guide

(this manual)

IBM Informix: J/Foundation Developer's Guide for

differences between server and client JDBC driver

x IBM Informix JDBC Driver Programmer’s Guide

To Do This Consult This Document

Debug a Java application IBM Informix: JDBC Driver Programmer's Guide

(this manual)

Access nonrelational data IBM Informix: Java Virtual-Table Interface Programmer's

Manual

About This Manual

This guide describes how to install, load, and use IBM Informix JDBC Driver

to connect to an Informix database from within a Java application or applet.

You can also use IBM Informix JDBC Driver for writing user-defined routines

that are executed in the server.

This section discusses the organization of the manual, the intended audience,

and the associated software products you must have to use IBM Informix

JDBC Driver.

Organization of This Manual

This manual includes the following chapters:

v This introduction discusses manual organization and conventions, explains

what is and what is not documented in this manual, lists features in the

IBM Informix JDBC Driver that have been added since the release of JDBC

2.21. JC4, and discusses compliance with the Sun Microsystem JDBC 3.0

specification.

v Chapter 1, “Getting Started,” on page 1-1, describes IBM Informix JDBC

Driver and the JDBC application programming interface (API) in general. It

provides information essential for programmers to start using the product

immediately, including how to install and load the driver.

v Chapter 2, “Connecting to the Database,” on page 2-1, explains in more

detail the Informix-specific information needed to use IBM Informix JDBC

Driver to connect to an Informix database. This information includes how

to create a connection to an Informix database, how to set connection

properties, and how to use various connection methods supported by

IBM Informix JDBC Driver.

v Chapter 3, “Performing Database Operations,” on page 3-1, explains how to

query the database, handle errors and transactions, and use XML

documents.

v Chapter 4, “Working With Informix Types,” on page 4-1, explains how to

use the Informix-specific data types supported in IBM Informix JDBC

Driver.

v Chapter 5, “Working with Opaque Types,” on page 5-1, explains how to use

the Informix extensions for opaque types and user-defined routines.

Introduction xi

v Chapter 6, “Internationalization and Date Formats,” on page 6-1, explains

how IBM Informix JDBC Driver extends the Java JDK 1.3.1 and later

internationalization features by providing access to Informix databases that

are based on different locales and code sets.

v Chapter 7, “Tuning and Troubleshooting,” on page 7-1, provides

troubleshooting tips to solve programming errors and problems with the

driver. It also describes browser security issues when you use IBM Informix

JDBC Driver in a Java applet.

v Appendix A, “Sample Code Files,” on page A-1, provides an overview of

the files installed with IBM Informix JDBC Driver that contain the

examples referred to in the guide.

v Appendix B, “DataSource Extensions,” on page B-1, lists the Informix

DataSource interface extensions.

v Appendix C, “Mapping Data Types,” on page C-1, explains how to map

between data types defined in a Java program and the data types

supported by the Informix database server.

v An Accessibility appendix describes how to read syntax diagrams in the

HTML version of this manual using a screen reader.

v A Glossary of relevant terms is provided, for reference.

v An Error Message section is provided, for reference.

v A Notices appendix provides information about IBM products and services.

Supplementary JDBC Documentation

The following sections describe the online files that supplement the

information in this manual. Please examine these files before you begin using

your database server:

v Documentation notes and release notes

– jdbcrel.htm The release notes describe any special actions required to

configure and use IBM Informix JDBC Driver on your computer.

Additionally, this file contains information about any known problems

and their workarounds.

– jdbcdoc.htm The documentation notes describe features not covered in

the manuals or modified since publication.
v Javadoc pages

After installation, these files are located in the following directories:

UNIX Only

v $JDBCLOCATION/doc/release, where $JDBCLOCATION refers to the

directory where you installed IBM Informix JDBC Driver.

xii IBM Informix JDBC Driver Programmer’s Guide

Windows 2000 Only

v %JDBCLOCATION%\doc\release, where %JDBCLOCATION% refers to

the directory where you installed IBM Informix JDBC Driver.

End of Windows 2000 Only

Please examine these files because they contain vital information about

application and performance issues.

The javadoc pages describe the Informix extension classes, interfaces, and

methods in detail.

UNIX Only

Javadoc pages are located in $JDBCLOCATION/doc/javadoc, where

$JDBCLOCATION refers to the directory where you installed IBM Informix

JDBC Driver.

End of UNIX Only

Windows 2000 Only

Javadoc pages are located in %JDBCLOCATION%\doc\javadoc, where

%JDBCLOCATION% refers to the directory where you installed

IBM Informix JDBC Driver.

End of Windows 2000 Only

 For more information about the JDBC API, visit the Sun Microsystems site.

Material Not Covered

This manual does not duplicate information about new features documented

elsewhere in the IBM Informix documentation set, but does document JDBC

driver-specific information and references the manuals that describe other

features in detail.

In addition, this manual will not discuss SQL features implemented in the IDS

and XPS servers and implicitly supported by JDBC.

This guide does not describe all the interfaces, classes, and methods of the

JDBC API and does not provide detailed descriptions of how to use the JDBC

API to write Java applications that connect to Informix databases. The

Introduction xiii

examples in the guide provide enough information to show how to use

IBM Informix JDBC Driver but do not provide an extensive description of the

JDBC API.

For more information about the JDBC API, visit the Sun Microsystems Web

site at http://java.sun.com.

This manual describes the Informix extensions to JDBC in a task-oriented

format; it does not include every method and parameter in the interface. For

the complete reference, including all methods and parameters, see the online

javadoc, which appears in the doc/javadoc directory where you installed

IBM Informix JDBC Driver.

This manual does not describe interfaces and limitations that are unique to

the server-side version of the IBM Informix JDBC Driver; that information is

covered in the IBM Informix: J/Foundation Developer's Guide. For more

information, see “Client- and Server-Side JDBC Drivers” on page 1-7.

Types of Users

This guide is for Java programmers who use the JDBC API to connect to

Informix databases using IBM Informix JDBC Driver. To use this guide, you

should know how to program in Java and, in particular, understand the

classes and methods of the JDBC API.

Software Dependencies

To use IBM Informix JDBC Driver to connect to an Informix database, you

must use one of the following Informix database servers:

v IBM Informix Dynamic Server, Version 7.x

v IBM Informix Dynamic Server, Workgroup and Developer Editions, Version

7.x

v IBM Informix Dynamic Server with Advanced Decision Support and

Extended Parallel Options , Version 8.x

v IBM Informix Extended Parallel Server, Version 8.3 or later

v IBM Informix Dynamic Server, Version 9.2x or later

v IBM Informix OnLine Dynamic Server, Version 5.x

v IBM Informix SE, Versions 5.x and 7.2x

You must also use Java Development Kit (JDK) Version 1.3.1 or later.

Assumptions About Your Locale

Informix products can support many languages, cultures, and code sets. All

culture-specific information is brought together in a single environment, called

a GLS (Global Language Support) locale.

xiv IBM Informix JDBC Driver Programmer’s Guide

The examples in this manual are written with the assumption that you are

using the default locale, en_us.8859-1. This locale supports U.S. English

format conventions for date, time, and currency. In addition, this locale

supports the ISO 8859-1 code set, which includes the ASCII code set plus

many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,

or if you want to conform to the nondefault collation rules of character data,

you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and

other considerations related to GLS locales, see the IBM Informix: GLS User's

Guide.

New Features

IBM Informix JDBC 3.0 JDBC driver strives to be J2EE 1.4 JDBC

API-compliant. With IDS 10.0 and 3.00.JC1, virtually all JDBC 3.0 required

features have the specified behavior. For the JDBC 3.0 optional features, if the

feature is supported by IDS 10.00.xC1, then it is supported by 3.00.JC1.

New features for the IBM Informix JDBC Driver, Version 3.0, focus on

compliance with the Sun Microsystems JDBC 3.0 specifications. For more

information on Sun Microsystems JDBC 3.0 specifications, see

http://java.sun.com/.

IBM Informix JDBC Driver, Version 3.0 introduces the following features,

supporting IBM Informix Dynamic Server, Version 10.0:

v Blob and Clob interfaces

Previous releases of the IBM Informix JDBC Driver supported BLOB and

CLOB internal updates with Informix extensions to JDBC specifications and

some of the Sun Microsystems JDBC 3.0 methods for internal updates.

Version 3.0 of the IBM Informix JDBC Driver implements all methods for

BLOB and CLOB internal updates introduced in JDBC 3.0 specifications.

The Informix extension methods continue to be supported.

For more information about the previously implemented methods for Blob

and Clob interfaces, see “Smart Large Object Data Types” on page 4-33.

For more information about the new methods for Blob and Clob interfaces,

see “Smart Large Object Data Types” on page 4-33

v JDBC 3.0 ResultSet interface

This feature extends the updatexxx methods to include JDBC types

implemented with locators.

Introduction xv

For more information about the updatexxx methods for types implemented

with locators, see “Classes Implemented in IBM Informix JDBC Driver” on

page 1-3.

v JDBC ResultSet holdability

JDBC 3.0 methods for specifying Resultset holdability have been

implemented.

For more information about the new methods for ResultSet holdability, see

“Using Hold Cursors” on page 3-5.

v Autogenerate keys for JDBC

The IBM Informix JDBC Driver 3.0 and later supports retrieving

auto-generated keys from the database server, as defined in the Sun

Microsystem JDBC 3.0 specification.

For more information about support for retrieving autogenerated keys, see

“Accessing Database Metadata” on page 3-21.

v Support for multiple INOUT parameters

IBM Informix Dynamic Server, Version 10.0 and later, and the IBM Informix

JDBC Driver 3.0 and later support multiple INOUT parameters.

For more information about support for multiple INOUT parameters, see

“IN and OUT Parameter Type Mapping” on page 3-12.

v Support for binary parameters

SPL UDRs can receive methods to accept OUT parameter descriptors and

data provided by the server (Dynamic Server 10.0 and later) for use in Java

applications.

For more information on support for binary parameters, see “Using

CallableStatement OUT Parameters” on page 3-7.

v Software Electronic Licensing

Software Electronic Licensing has been updated in IBM Informix JDBC

Driver 3.0.

Features Added for IBM Informix JDBC Driver, Version 2.21.JC5

The following features were previously documented only in the release notes

for Version 2.21.JC5:

v Network encryption

IBM Informix Dynamic Server, Version 9.4 and later, enables encryption of

data transmitted over a network using an encryption communication

support module. IBM Informix JDBC Driver, Version 2.21.JC5 and later,

makes this feature available to all JDBC clients by adding a communication

support module (CSM) to the JDBC driver.

For more information on encryption CSM, see “Using Network Encryption”

on page 2-33

v MetaData improvements

xvi IBM Informix JDBC Driver Programmer’s Guide

New methods for JDBC 3.0 compliance have been added in the

DatabaseMetaData interface.

For more information on MetaData improvements, see “Accessing Database

Metadata” on page 3-21.

v Pluggable Authentication Module (PAM) authentication method

As of JDBC 2.21.JC5, the JDBC driver has implemented support for

handling PAM-enabled Dynamic Server 9.4 and later servers.

For more information on the PAM Authentication Method, see “PAM

Authentication Method” on page 2-36.

v SQL boolean support

This feature extends the handling of boolean data types with the IDS

servers 9.x and later, and complies with the JDBC 3.0 specification.

For more information on SQL boolean support, see “Data Type Mapping

Between Informix and JDBC Data Types” on page C-1.

Features New to IBM Informix JDBC Driver, Version 2.21.JC4

The IBM Informix JDBC Driver, Version 2.21.JC4, introduced the following

features, supported by IBM Informix Dynamic Server, Version 9.40 and later.

 v JDBC Driver support for 32K LVARCHAR feature

IBM Informix Dynamic Server, Version 9.40 supports an optional parameter

for LVARCHAR to specify the desired maximum length of 32739. The

following is an example of acceptable syntax:

CREATE TABLE TAB1 (COL1 LVARCHAR(32739))

Users can specify any value, from 1 to 32739 bytes. For compatibility with

existing SQL, if the optional maximum size parameter is omitted, then a

size of 2KB will be used.
v Describe Input Parameter

(JDBC support for java.sql.ParameterMetaData interface)

The IBM Informix JDBC Driver, Version 2.21.JC4, implements a new JDBC

3.0 interface called java.sql.ParameterMetaData to describe input

parameters in prepared statements. The getParameterMetaData() method

retrieves the metadata for a particular statement. Besides supporting the

JDBC 3.0 ParameterMetaData interface, the IBM Informix JDBC Driver

implements additional methods to this interface to extend its functionality.

For additional information about this feature, see “JDBC Support for

DESCRIBE INPUT” on page 3-14.

The ParameterMetaData class and the getParameterMetaData() method are

part of the JDBC 3.0 API and are included as interfaces in J2SDK1.4.0. For

details of these interfaces, see the JDBC 3.0 specification.

v Support for Multiple UDR OUT Parameters

In JDBC, a CallableStatement object provides a standard way to call or

execute user-defined procedures and functions and stored procedures

Introduction xvii

(hereafter referred to as UDRs) for all relational databases. Results are

returned as a resultset or OUT parameter.

The IBM Informix Dynamic Server prior to Version 9.40 supports a single

OUT parameter in user-defined functions, but not an OUT parameter in

user-defined procedures. Version 9.40 adds support for multiple OUT

parameters in user-defined functions and user-defined procedures.

For additional information about this feature, see “Using CallableStatement

OUT Parameters” on page 3-7.

v Enhancement to the JDBC ReadOnly method for CTS Compliance

IBM Informix Dynamic Server, Version 9.40, does not support read-only

connections.

Previous versions of the JDBC driver threw an unsupported method

exception when setReadOnly() was called. The new implementation of the

setReadOnly() method from the java.sql.Connection interface now accepts

the value passed to it by the calling process as no op (returns to the calling

process without any interaction to the server) instead of throwing an

exception.

This change has been made to synchronize the functionality present in the

IBM DB2 JDBC driver to that of the IBM Informix JDBC driver and also to

achieve a higher level of compliance to the Sun Conformance Test (CTS).

For additional information about this feature, see the Important note after

“Unsupported Methods and Methods that Behave Differently” on page

3-16.

v New connection properties: IFX_LOCK_MODE_WAIT and

IFX_ISOLATION_LEVEL

Application servers can use these properties for obtaining connections using

IBM Informix JDBC Driver.

An application can use the IFX_LOCK_MODE_WAIT connection property

to override the default that defines how the database server tries to access a

locked row or table.

An application can use the IFX_ISOLATION_LEVEL connection property

to define the degree of concurrency among processes that attempt to access

the same rows simultaneously.

For additional information about this feature, see “Using a DataSource

Object” on page 2-3 and “Format of Database URLs” on page 2-7. In

addition, see “Getting and Setting Informix Connection Properties” on page

B-3.

xviii IBM Informix JDBC Driver Programmer’s Guide

Documentation Conventions

 This section describes the conventions that this manual uses. These

conventions make it easier to gather information from this and other volumes

in the documentation set.

The following conventions are discussed:

v Typographical conventions

v Other conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD All primary elements in a programming language statement

(keywords) appear in uppercase letters in a serif font.

italics

italics

italics

Within text, new terms and emphasized words appear in italics.

Within syntax and code examples, variable values that you are to

specify appear in italics.

boldface

boldface

Names of program entities (such as classes, events, and tables),

environment variables, file and pathnames, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace

monospace

Information that the product displays and information that you

enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Tip: When you are instructed to “enter” characters or to “execute” a

command, immediately press RETURN after the entry. When you are

instructed to “type” the text or to “press” other keys, no RETURN is

required.

Feature, Product, and Platform

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some

Introduction xix

examples of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Extended Parallel Server

Identifies information that is specific to IBM Informix Extended Parallel Server

End of Extended Parallel Server

UNIX Only

Identifies information that is specific to UNIX platforms

End of UNIX Only

Windows Only

Identifies information that is specific to the Windows environment

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part

of the heading text, for example:

 Table Sorting (Linux Only)

Syntax Diagrams

This guide uses syntax diagrams built with the following components to

describe the syntax for statements and all commands other than system-level

commands.

Note: Starting in 2004, syntax diagrams have been reformatted to conform to

the IBM standard.

Syntax diagrams depicting SQL and command-line statements have changed

in the following ways:

v The symbols at the beginning and end of statements are now double arrows

instead of a vertical line at the end.

v The symbols at the beginning and end of syntax segment diagrams are now

vertical lines instead of arrows.

xx IBM Informix JDBC Driver Programmer’s Guide

v How many times a loop can be repeated is now explained in a diagram

footnote instead of a number in a gate symbol.

v Syntax statements that are longer than one line now continue on the next

line instead of looping down with a continuous line.

v Product or condition-specific paths are now explained in diagram footnotes

instead of icons.

The following table describes syntax diagram components.

 Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on

next line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item

must be present.

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you

might specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the

main line are optional, one

of which you might

specify. If you do not

specify an item, the value

above the line will be used

as the default.

Introduction xxi

Component represented in PDF Component represented in HTML Meaning

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several

items are allowed; a

comma must precede each

repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed

in the table in the previous section.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

�

-t

table

�

(1)

Setting the Run Mode

-S

server

-T

target

��

Notes:

1 See page 17-4

The second line in this diagram has a segment named “Setting the Run

Mode,” which according to the diagram footnote, is on page 17-4. This

segment is shown in the following segment diagram (the diagram uses

segment start and end components).

Setting the Run Mode:

xxii IBM Informix JDBC Driver Programmer’s Guide

-f

d

p

a

 l

c

u

n

N

To construct a command correctly, start at the top left with the command.

Follow the diagram to the right, including the elements that you want. The

elements in the diagram are case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and

repeat them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then

optionally type l or u.
5. Follow the diagram to the terminator.

Your diagram is complete.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword

exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly

as shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax

diagrams and examples. You can replace a variable with an arbitrary name,

Introduction xxiii

identifier, or literal, depending on the context. Variables are also used to

represent complex syntax elements that are expanded in additional syntax

diagrams. When a variable appears in a syntax diagram, an example, or text,

it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the

code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules

for that product. For example, if you are using DB–Access, you must delimit

multiple statements with semicolons. If you are using an SQL API, you must

use EXEC SQL at the start of each statement and a semicolon (or other

appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be

added in a full application, but it is not necessary to show it to describe

the concept being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the manual for your product.

xxiv IBM Informix JDBC Driver Programmer’s Guide

Additional Documentation

For additional information, refer to the following types of documentation:

v Installation guides

v Online notes

v Informix error messages

v Manuals

v Online help

Installation Guides

Installation guides are located in the /doc directory of the product CD or in

the /doc directory of the product‘s compressed file if you downloaded it from

the IBM Web site. Alternatively, you can obtain installation guides from the

IBM Informix Online Documentation site at

http://www.ibm.com/software/data/informix/pubs/library/.

Online Notes

The following sections describe the online files that supplement the

information in this manual. Please examine these files before you begin using

your IBM Informix product. They contain vital information about application

and performance issues.

Introduction xxv

http://www.ibm.com/software/data/informix/pubs/library/

Online File Description Format

TOC Notes The TOC (Table of Contents) notes file

provides a comprehensive directory of

hyperlinks to the release notes, the fixed and

known defects file, and all the documentation

notes files for individual manual titles.

HTML

Documentation Notes The documentation notes file for each manual

contains important information and

corrections that supplement the information

in the manual or information that was

modified since publication.

HTML, text

Release Notes The release notes file describes feature

differences from earlier versions of IBM

Informix products and how these differences

might affect current products. For some

products, this file also contains information

about any known problems and their

workarounds.

HTML, text

Machine Notes (Non-Windows platforms only) The machine

notes file describes any platform-specific

actions that you must take to configure and

use IBM Informix products on your

computer.

text

Fixed and Known

Defects File

This text file lists issues that have been

identified with the current version. It also lists

customer-reported defects that have been

fixed in both the current version and in

previous versions.

text

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site

at http://www.ibm.com/software/data/informix/pubs/library/. Additionally

you can locate these files before or after installation as described below.

Before Installation

All online notes are located in the /doc directory of the product CD. The

easiest way to access the documentation notes, the release notes, and the fixed

and known defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided

in text format.

After Installation

xxvi IBM Informix JDBC Driver Programmer’s Guide

http://www.ibm.com/software/data/informix/pubs/library/

On UNIX platforms in the default locale, the documentation notes, release

notes, and machine notes files appear under the

$INFORMIXDIR/release/en_us/0333 directory.

Dynamic Server

On Windows the documentation and release notes files appear in the

Informix folder. To display this folder, choose Start > Programs > IBM

Informix Dynamic Server version > Documentation Notes or Release Notes

from the taskbar.

Machine notes do not apply to Windows platforms.

End of Dynamic Server

Online Notes Filenames

Online notes have the following file formats:

 Online File File Format Examples

TOC Notes prod_os_tocnotes_version.html ids_win_tocnotes_10.0.html

Documentation Notes prod_bookname_docnotes_version.html/txt ids_hpl_docnotes_10.0.html

Release Notes prod_os_relnotes_version.html/txt ids_unix_relnotes_10.0.txt

Machine Notes prod_machine_notes_version.txt ids_machine_notes_10.0.txt

Fixed and Known

Defects File

prod_defects_version.txt

ids_win_fixed_and_known

_defects_version.txt

ids_defects_10.0.txt

client_defects_2.90.txt

ids_win_fixed_and_known

_defects_10.0.txt

Informix Error Messages

This file is a comprehensive index of error messages and their corrective

actions for the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and

their corrective actions.

Dynamic Server

On Windows, use the Informix Error Messages utility to read error messages

and their corrective actions. To display this utility, choose Start > Programs >

IBM Informix Dynamic Server version > Informix Error Messages from the

taskbar.

End of Dynamic Server

Introduction xxvii

You can also access these files from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Manuals

Online Manuals

A CD that contains your manuals in electronic format is provided with your

IBM Informix products. You can install the documentation or access it directly

from the CD. For information about how to install, read, and print online

manuals, see the installation insert that accompanies your CD. You can also

obtain the same online manuals from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Printed Manuals

To order hardcopy manuals, contact your sales representative or visit the IBM

Publications Center Web site at

http://www.ibm.com/software/howtobuy/data.html.

Online Help

IBM Informix online help, provided with each graphical user interface (GUI),

displays information about those interfaces and the functions that they

perform. Use the help facilities that each GUI provides to display the online

help.

Accessibility

IBM is committed to making our documentation accessible to persons with

disabilities. Our books are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our manuals are available in dotted decimal format, which is an

accessible format that is available only if you are using a screen reader. For

more information about the dotted decimal format, see the Accessibility

appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90

Documentation Set

The following tables list the manuals that are part of the IBM Informix

Dynamic Server, Version 10.0 and the CSDK Version 2.90, documentation set.

PDF and HTML versions of these manuals are available at

http://www.ibm.com/software/data/informix/pubs/library/. You can order

hardcopy versions of these manuals from the IBM Publications Center at

http://www.ibm.com/software/howtobuy/data.html.

xxviii IBM Informix JDBC Driver Programmer’s Guide

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html

Table 1. Database Server Manuals

Manual Subject

Administrator’s Guide Understanding, configuring, and administering your database server.

Administrator’s Reference Reference material for Informix Dynamic Server, such as the syntax of

database server utilities onmode and onstat, and descriptions of

configuration parameters, the sysmasters tables, and logical-log records.

Backup and Restore Guide The concepts and methods you need to understand when you use the

ON-Bar and ontape utilities to back up and restore data.

DB-Access User’s Guide Using the DB-Access utility to access, modify, and retrieve data from

Informix databases.

DataBlade API

Function Reference

The DataBlade API functions and the subset of ESQL/C functions that

the DataBlade API supports. You can use the DataBlade API to develop

client LIBMI applications and C user-defined routines that access data in

Informix databases.

DataBlade API

Programmer’s Guide

The DataBlade API, which is the C-language application-programming

interface provided with Dynamic Server. You use the DataBlade API to

develop client and server applications that access data stored in Informix

databases.

Database Design and

Implementation Guide

Designing, implementing, and managing your Informix databases.

Enterprise Replication

Guide

How to design, implement, and manage an Enterprise Replication system

to replicate data between multiple database servers.

Error Messages file Causes and solutions for numbered error messages you might receive

when you work with IBM Informix products.

Getting Started Guide Describes the products bundled with IBM Informix Dynamic Server and

interoperability with other IBM products. Summarizes important features

of Dynamic Server and the new features for each version.

Guide to SQL: Reference Information about Informix databases, data types, system catalog tables,

environment variables, and the stores_demo demonstration database.

Guide to SQL: Syntax Detailed descriptions of the syntax for all Informix SQL and SPL

statements.

Guide to SQL: Tutorial A tutorial on SQL, as implemented by Informix products, that describes

the basic ideas and terms that are used when you work with a relational

database.

High-Performance Loader

User’s Guide

Accessing and using the High-Performance Loader (HPL), to load and

unload large quantities of data to and from Informix databases.

Installation Guide for

Microsoft Windows

Instructions for installing IBM Informix Dynamic Server on Windows.

Installation Guide for

UNIX and Linux

Instructions for installing IBM Informix Dynamic Server on UNIX and

Linux.

Introduction xxix

Table 1. Database Server Manuals (continued)

Manual Subject

J/Foundation Developer’s

Guide

Writing user-defined routines (UDRs) in the Java programming language

for Informix Dynamic Server with J/Foundation.

Large Object Locator

DataBlade Module User’s

Guide

Using the Large Object Locator, a foundation DataBlade module that can

be used by other modules that create or store large-object data. The Large

Object Locator enables you to create a single consistent interface to large

objects and extends the concept of large objects to include data stored

outside the database.

Migration Guide Conversion to and reversion from the latest versions of Informix

database servers. Migration between different Informix database servers.

Optical Subsystem Guide The Optical Subsystem, a utility that supports the storage of BYTE and

TEXT data on optical disk.

Performance Guide Configuring and operating IBM Informix Dynamic Server to achieve

optimum performance.

R-Tree Index User’s Guide Creating R-tree indexes on appropriate data types, creating new operator

classes that use the R-tree access method, and managing databases that

use the R-tree secondary access method.

SNMP Subagent Guide The IBM Informix subagent that allows a Simple Network Management

Protocol (SNMP) network manager to monitor the status of Informix

servers.

Storage Manager

Administrator’s Guide

Informix Storage Manager (ISM), which manages storage devices and

media for your Informix database server.

Trusted Facility Guide The secure-auditing capabilities of Dynamic Server, including the creation

and maintenance of audit logs.

User-Defined Routines and

Data Types Developer’s

Guide

How to define new data types and enable user-defined routines (UDRs)

to extend IBM Informix Dynamic Server.

Virtual-Index Interface

Programmer’s Guide

Creating a secondary access method (index) with the Virtual-Index

Interface (VII) to extend the built-in indexing schemes of IBM Informix

Dynamic Server. Typically used with a DataBlade module.

Virtual-Table Interface

Programmer’s Guide

Creating a primary access method with the Virtual-Table Interface (VTI)

so that users have a single SQL interface to Informix tables and to data

that does not conform to the storage scheme of Informix Dynamic Server.

 Table 2. Client/Connectivity Manuals

Manual Subject

Client Products Installation

Guide

Installing IBM Informix Client Software Developer’s Kit (Client SDK) and

IBM Informix Connect on computers that use UNIX, Linux, and

Windows.

Embedded SQLJ User’s

Guide

Using IBM Informix Embedded SQLJ to embed SQL statements in Java

programs.

xxx IBM Informix JDBC Driver Programmer’s Guide

Table 2. Client/Connectivity Manuals (continued)

Manual Subject

ESQL/C Programmer’s

Manual

The IBM Informix implementation of embedded SQL for C.

GLS User’s Guide The Global Language Support (GLS) feature, which allows IBM Informix

APIs and database servers to handle different languages, cultural

conventions, and code sets.

JDBC Driver Programmer’s

Guide

Installing and using Informix JDBC Driver to connect to an Informix

database from within a Java application or applet.

.NET Provider Reference

Guide

Using Informix .NET Provider to enable .NET client applications to

access and manipulate data in Informix databases.

ODBC Driver Programmer’s

Manual

Using the Informix ODBC Driver API to access an Informix database and

interact with the Informix database server.

OLE DB Provider

Programmer’s Guide

Installing and configuring Informix OLE DB Provider to enable client

applications, such as ActiveX Data Object (ADO) applications and Web

pages, to access data on an Informix server.

Object Interface for C++

Programmer’s Guide

The architecture of the C++ object interface and a complete class

reference.

 Table 3. DataBlade Developer’s Kit Manuals

Manual Subject

DataBlade Developer’s Kit

User’s Guide

Developing and packaging DataBlade modules using BladeSmith and

BladePack.

DataBlade Module

Development Overview

Basic orientation for developing DataBlade modules. Includes an

example illustrating the development of a DataBlade module.

DataBlade Module

Installation and Registration

Guide

Installing DataBlade modules and using BladeManager to manage

DataBlade modules in Informix databases.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of

industry standards for the Structured Query Language (SQL). IBM Informix

SQL-based products are fully compliant with SQL-92 Entry Level (published

as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many

features of IBM Informix database servers comply with the SQL-92

Intermediate and Full Level and X/Open SQL Common Applications

Environment (CAE) standards.

Introduction xxxi

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find

useful in our manuals, which will help us improve future versions. Include

the following information:

v The name and version of the manual that you are using

v Section and page number

v Your suggestions about the manual

Send your comments to us at the following email address:

docinf@us.ibm.com

This email address is reserved for reporting errors and omissions in our

documentation. For immediate help with a technical problem, contact IBM

Technical Support.

We appreciate your suggestions.

xxxii IBM Informix JDBC Driver Programmer’s Guide

mailto:docinf@us.ibm.com

Chapter 1. Getting Started

What Is JDBC? . 1-1

What Is a JDBC Driver? . 1-2

Overview of IBM Informix JDBC Driver . 1-3

Classes Implemented in IBM Informix JDBC Driver 1-3

Informix Classes That Implement Java Interfaces 1-3

Informix Classes that Extend the Java Specification 1-4

Informix Classes That Provide Support Beyond the Java Specification 1-5

Using UDTManager and UDRManager Classes with JDK 1.4 1-5

Files in IBM Informix JDBC Driver . 1-5

Client- and Server-Side JDBC Drivers . 1-7

Installing the Driver . 1-7

Installing in Graphical Mode . 1-8

Installing in Console Mode . 1-9

Installing in Silent Mode . 1-9

Logging Install Events . 1-10

Using the Driver in an Application . 1-10

Using the Driver in an Applet . 1-12

Uninstalling the Driver . 1-13

In This Chapter

This chapter provides an overview of IBM Informix JDBC Driver and the

JDBC API. It includes the following sections:

v What Is JDBC?

v What Is a JDBC Driver?

v Overview of IBM Informix JDBC Driver

v Installing the Driver

v Using the Driver in an Application

v Using the Driver in an Applet

v Uninstalling the Driver

What Is JDBC?

Java database connectivity (JDBC) is the JavaSoft specification of a standard

application programming interface (API) that allows Java programs to access

database management systems. The JDBC API consists of a set of interfaces

and classes written in the Java programming language.

© Copyright IBM Corp. 1996, 2004 1-1

Using these standard interfaces and classes, programmers can write

applications that connect to databases, send queries written in structured

query language (SQL), and process the results.

Since JDBC is a standard specification, one Java program that uses the JDBC

API can connect to any database management system (DBMS), as long as a

driver exists for that particular DBMS.

For more information about the JDBC API, visit the Sun Microsystems Web

site at http://java.sun.com/.

What Is a JDBC Driver?

The JDBC API defines the Java interfaces and classes that programmers use to

connect to databases and send queries. A JDBC driver implements these

interfaces and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a

particular DBMS before it actually connects to a database. The JDBC

DriverManager class then sends all JDBC API calls to the loaded driver.

There are four types of JDBC drivers:

v JDBC-ODBC bridge plus ODBC driver, also called Type 1 driver

Translates JDBC API calls into Microsoft ODBC calls that are then passed to

the ODBC driver

The ODBC binary code must be loaded on every client computer that uses

this type of driver.

ODBC is an acronym for Open Database Connectivity.

v Native-API, partly Java driver, also called Type 2 driver

Converts JDBC API calls into DBMS-specific client API calls

Like the bridge driver, this type of driver requires that some binary code be

loaded on each client computer.

v JDBC-Net, pure-Java driver, also called Type 3 driver

Sends JDBC API calls to a middle-tier server that translates the calls into

the DBMS-specific network protocol

The translated calls are then sent to a particular DBMS.

v Native-protocol, pure-Java driver, also called Type 4 driver

Converts JDBC API calls directly into the DBMS-specific network protocol

without a middle tier

This allows the client applications to connect directly to the database server.

1-2 IBM Informix JDBC Driver Programmer’s Guide

Overview of IBM Informix JDBC Driver

IBM Informix JDBC Driver is a native-protocol, pure-Java driver (Type 4).

This means that when you use IBM Informix JDBC Driver in a Java program

that uses the JDBC API to connect to an Informix database, your session

connects directly to the database or database server, without a middle tier.

IBM Informix JDBC Driver 3.0, supported by IBM Informix Dynamic Server

10.0 and later, is fully compliant with the JDBC 3.0 API.

Classes Implemented in IBM Informix JDBC Driver

To support DataSource objects, connection pooling, and distributed

transactions, IBM Informix JDBC Driver provides classes that implement

interfaces and classes described in the JDBC 3.0 API from Sun Microsystems.

Informix Classes That Implement Java Interfaces

The following table lists the Java interfaces and classes and the Informix

classes that implement them.

JDBC Interface or Class Informix Class

java.io.Serializable com.informix.jdbcx.IfxCoreDataSource

java.sql.Connection com.informix.jdbc.IfmxConnection

javax.sql.ConnectionEventListener

com.informix.jdbcx.IfxConnectionEvent-

Listener

javax.sql.ConnectionPoolDataSource

com.informix.jdbcx.IfxConnectionPoolData-

Source

javax.sql.DataSource com.informix.jdbcx.IfxDataSource

javax.sql.PooledConnection com.informix.jdbcx.IfxPooledConnection

javax.sql.XADataSource com.informix.jdbcx.IfxXADataSource

java.sql.ParameterMetaData com.informix.jdbc.IfxParameterMetaData

 IBM Informix JDBC Driver, Version 3.0, implements the new updateXXX()

methods defined in the ResultSet interface by the JDBC 3.0 specification.

These new methods, such as updateClob, are further defined in the J2SDK

1.4.x API and require that the ResultSet object be updateable. The updateXXX

methods allow rows to be updated using Java variables and objects and

extend to include additional JDBC types.

These methods update JDBC types implemented with locators, not the data

designated by the locators.

Chapter 1. Getting Started 1-3

Informix Classes that Extend the Java Specification

To support the Informix implementation of SQL statements and data types,

IBM Informix JDBC Driver provides classes that extend the JDBC 3.0 API. The

following table lists the Java classes and the Informix classes that application

programs can use to extend them.

JDBC Interface or Class Informix Class

Adds Methods or

Constants for...

java.sql.Connection com.informix.jdbc.IfmxConnection Opaque, distinct, and

complex types

java.sql.Statement com.informix.jdbc.IfmxStatement Single result sets, autofree

mode, statement types, and

SERIAL data type processing

java.lang.Object com.informix.lang.IfxTypes Representing data types

java.lang.Object com.informix.jdbc.IfxStatementTypes Representing SQL statements

java.sql.CallableStatement com.informix.jdbc.IfmxCallableStatement Parameter processing with

Informix types

java.sql.PreparedStatement com.informix.jdbc.IfmxPreparedStatement Parameter processing with

Informix types

java.sql.ResultSet com.informix.jdbc.IfmxResultSet Informix interval data types

java.sql.ResultSetMetaData com.informix.jdbc.IfmxResultSetMetaData Columns with Informix data

types

java.sql.SQLInput com.informix.jdbc.IfmxComplexSQLInput Opaque, distinct, and

complex types

java.sql.SQLOutput com.informix.jdbc.IfmxComplexSQLOutput Opaque, distinct, and

complex types

java.lang.Object com.informix.jdbc.Interval Interval qualifiers and some

common methods for the

next two classes (base class

for the next two)

java.lang.Object com.informix.jdbc.IntervalYM Interval year-to-month

java.lang.Object com.informix.jdbc.IntervalDF Interval day-to-fraction

java.lang.Object com.informix.jdbc.IfxSmartBlob Access methods for smart

large objects

java.sql.Blob com.informix.jdbc.IfxBblob Binary large objects

java.sql.Clob com.informix.jdbc.IfxCblob Character large objects

java.lang.Object com.informix.jdbc.IfxLocator Large object locator pointer

java.lang.Object com.informix.jdbc.IfxLoStat Statistical information about

smart large objects

java.lang.Object com.informix.jdbc.IfxLobDescriptor Internal characteristics of

smart large objects

1-4 IBM Informix JDBC Driver Programmer’s Guide

JDBC Interface or Class Informix Class

Adds Methods or

Constants for...

java.lang.Object com.informix.jdbc.IfxUDTInfo General information about

opaque and distinct types,

detailed information about

complex types

java.sql.SQLInput com.informix.jdbc.IfmxUDTSQLInput Opaque, distinct, and

complex types

java.sql.SQLOutput com.informix.jdbc.IfmxUDTSQLOutput Opaque, distinct, and

complex types

Informix Classes That Provide Support Beyond the Java Specification

A number of Informix classes provide support for functionality not present in

the Java specification. These classes are listed in the following table.

 JDBC Interface or Class Informix Class Provides Support for...

java.lang.Object UDTManager Deploying opaque data types in the

database server

java.lang.Object UDTMetaData Deploying opaque data types in the

database server

java.lang.Object UDRManager Deploying user-defined routines in the

database server

java.lang.Object UDRMetaData Deploying user-defined routines in the

database server

Using UDTManager and UDRManager Classes with JDK 1.4

In previous releases, the UDTManager and UDRManager helper classes

included in ifxtools.jar were not accessible from a packaged class. As of

IBM Informix JDBC Driver 2.21.JC3, all these classes are in the udtudrmgr

package. For backwards compatibility, unpackaged versions of these classes

are also included.

To access a packaged class, use the following import statements in your

program:

v import udtudrmgr.UDTManager;

v import udtudrmgr.UDRManager;

Files in IBM Informix JDBC Driver

IBM Informix JDBC Driver is available in the program file, setup.jar. For

instructions on how to install the driver, refer to “Installing the Driver” on

page 1-7.

Chapter 1. Getting Started 1-5

After installation, the product consists of the following files, some of which

are Java archive (JAR) files:

v lib/ifxjdbc.jar

Optimized implementations of the JDBC API interfaces, classes, and

methods

The file is compiled with the -O option of the javac command.

v lib/ifxtools.jar

Utilities: ClassGenerator, lightweight directory access protocol (LDAP)

loader, and others

The file is compiled with the -O option of the javac command.

v lib/ifxlang.jar

Localized versions of all message text supported by the driver

The file is compiled with the -O option of the javac command.

v lib/ifxjdbcx.jar

Includes the implementation of DataSource-, connection pooling-, and

XA-related class files

The file is compiled with the -O option of the javac command.

v lib/ifxsqlj.jar

Includes the classes for runtime support of SQLJ programs

The file is compiled with the -O option of the javac command.

v demo/basic/*

demo/rmi/*

demo/stores7/*

demo/clob-blob/*

demo/complex-types/*

demo/pickaseat/*

demo/xml/*

demo/proxy/*

demo/connection-pool/*

demo/udt-distinct/ *

demo/hdr/*

demo/tools/udtudrmgr/*

Sample programs that use the JDBC API

For descriptions of these sample files, see Appendix A, “Sample Code

Files,” on page A-1.

v proxy/IfxJDBCProxy.class

Http tunneling proxy class file

v proxy/SessionMgr.class

Session manager class file supporting the http tunneling proxy

v proxy/TimeoutMgr.class

1-6 IBM Informix JDBC Driver Programmer’s Guide

Timeout manager class file supporting the http tunneling proxy

v doc/release/*

Online release and documentation notes

v doc/javadoc/*

The javadoc pages for Informix extension classes and interfaces

The lib, demo, proxy, and doc directories are subdirectories of the directory

where you installed IBM Informix JDBC Driver.

Client- and Server-Side JDBC Drivers

The IBM Informix JDBC Driver exists in two versions: a client-side driver and

a server-side driver. The client-side driver is intended for client Java

applications accessing an Informix database server. The client-side driver

includes ifxjdbc.jar and ifxjdbcx.jar plus several support .jar files, as

described in the section, “Files in IBM Informix JDBC Driver” on page 1-5.

The server-side driver is installed as part of the database server and includes

jdbc.jar. Because jdbc.jar is derived from ifxjdbc.jar, the two drivers share

many features.

This guide is primarily concerned with the client-side driver; however

information for shared features applies to both the server-side and client-side

versions.

Note: The server-side and client-side versions should not be mixed or

interchanged.

The IBM Informix: J/Foundation Developer's Guide describes the interfaces and

subprotocols that the IBM Informix JDBC Driver provides specifically for

server-side JDBC applications, as well as restrictions that apply to server-side

JDBC applications.

Installing the Driver

You can obtain IBM Informix JDBC Driver, Version 3.0 from the product CD

or from www.ibm.com/software/data/developer/informix. The contents of

the CD or web download are as follows:

v setup.jar

v doc/jdbcdoc.htm

v doc/jdbcrel.htm

v doc/install.txt

The documentation directory /doc contains documentation notes and release

notes in .html format and install notes in text format. Refer to these

Chapter 1. Getting Started 1-7

documents for any new information not available in this manual. You can

install IBM Informix JDBC Driver in the following modes:

v Graphical mode. The graphical mode launches an install program in a

graphical user interface.

v Console mode. The console mode sends messages and information to the

console instead of displaying them in a GUI.

v Silent mode. The silent mode requires no interaction to run the install.

Tip: The following sections describe the three installation modes for all

platforms from the product CD-ROM. If you have obtained

IBM Informix JDBC Driver from a file server instead of from the

CD-ROM, unpack the file to a directory on your computer and substitute

the name of that directory for CD-ROM dir in the procedure below.

Tip: If you have obtained IBM Informix JDBC Driver as part of the product

bundle CD, the setup.jar file will be located at /JDBC instead of

CD-ROM dir in the procedure below.

Important: You can enable logging of install events by specifying the -log

option followed by arguments for file type, event type, and file

location. For more information about logging, see “Logging Install

Events” on page 1-10.

Installing in Graphical Mode

This section describes how to install IBM Informix JDBC Driver in graphical

mode.

 To install IBM Informix JDBC Driver in graphical mode:

1. Load the CD into the CD-ROM drive.

2. At the command prompt, execute the following command to launch the

GUI:

java -cp <CD-ROM dir>/setup.jar run

3. To continue through the copyright statement, click Next.

4. Choose the option:

I accept the terms in the license agreement.

Click Next.

5. Browse to specify a directory in which to install the IBM Informix JDBC

Driver or accept the default directory.

On a Windows platform, the default directory will be similar to:

C:\Program Files\IBM\Informix_JDBC_Driver

6. You will see the following message:

InstallShield Wizard has successfully installed IBM Informix JDBC Driver.

1-8 IBM Informix JDBC Driver Programmer’s Guide

Click Finish to exit the wizard.

Installing in Console Mode

This section describes how to install IBM Informix JDBC Driver in console

mode.

 To install IBM Informix JDBC Driver in console mode:

1. Load the CD into the CD-ROM drive.

2. At the command prompt, execute the following command to launch the

console mode installation:

java -cp <CD-ROM dir>/setup.jar run -console

You will see the copyright statement in the console screen.

3. At the following prompt, enter your selection:

Press Enter to continue viewing the license agreement, or, Enter “1”

to accept the agreement, “2” to decline it or “99” to go back to the

previous screen.

4. Specify a directory in which to install the IBM Informix JDBC Driver or

accept the default directory.

IBM Informix JDBC Driver will be installed in the following location.

The console shows the install directory.

The screen notifies you that the uninstaller is being added to the directory.

5. When you see:

The InstallShield Wizard has successfully installed

IBM Informix JDBC Driver

Press Enter to close the wizard.

Installing in Silent Mode

This section describes how to install IBM Informix JDBC Driver in silent

mode.

 To install Informix JDBC Driver in silent mode:

1. Load the CD into the CD-ROM drive.

2. At the command prompt, execute the following command:

java -cp setup.jar run -silent -P product.installLocation=<destination-dir>

Where <destination-dir> is where you want to install the JDBC Driver.

The installation is complete once the command has finished executing.

Chapter 1. Getting Started 1-9

Logging Install Events

For each of the installation modes, you can enable logging by specifying the

-log option when you execute the command to install the driver. Add the -log

option followed by arguments for file type, event type, and file location. For

instance, to install the IBM Informix JDBC Driver in graphical mode and

retain a log of the event, you would execute the following:

java -cp setup.jar run -log #![filename] @ [event type];[event type]

Where # echoes the display to standard output, ![filename] is your name for

the log file, and @ precedes the event type. You can omit the [filename]

argument to save the log information to the default file name.

A table of common event types follows.

Argument Event Type

err Errors

wrn Warning

msg1 Primary events

msg2 Secondary events

dbg Debug events

ALL All events

NONE Disables logging and clears the log file

 For example, the following of the command installs IBM Informix JDBC

Driver in the graphical mode and logs all events to /tmp/jdbcinstall.log:

java -cp setup.jar run -log !/tmp/jdbcinstall.log @ ALL

The following command installs IBM Informix JDBC Driver in silent mode

and logs error events to /tmp/jdbcinstall.log:

java -cp setup.jar run -silent -P product.installLocation=< > -log

!"/tmp/jdbcinstall.log" @err

Using the Driver in an Application

To use IBM Informix JDBC Driver in an application, you must set your

CLASSPATH environment variable to point to the driver files. The

CLASSPATH environment variable tells the Java virtual machine (JVM) and

other applications where to find the Java class libraries used in a Java

1-10 IBM Informix JDBC Driver Programmer’s Guide

program.

UNIX Only

There are two ways to set your CLASSPATH environment variable:

v Add the full pathname of ifxjdbc.jar to CLASSPATH:

setenv CLASSPATH /jdbcdriv/lib/ifxjdbc.jar:$CLASSPATH

To add localized message support, specify ifxlang.jar as well:

setenv CLASSPATH

/jdbcdriv/lib/ifxjdbc.jar:/jdbcdriv/lib/ifxlang.jar:

 $CLASSPATH

v Unpack ifxjdbc.jar and add its directory to CLASSPATH:

cd /jdbcdriv/lib

jar xvf ifxjdbc.jar

setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

To add localized message support, specify ifxlang.jar as well:

cd /jdbcdriv/lib

jar xvf ifxjdbc.jar

jar xvf ifxlang.jar

setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

End of UNIX Only

Windows 2000 Only

There are two ways to set your CLASSPATH environment variable:

v Add the full pathname of ifxjdbc.jar to CLASSPATH:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;%CLASSPATH%

To add localized message support, specify ifxlang.jar as well:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;c:\

 jdbcdriv\lib\ifxlang.jar;%CLASSPATH%

v Unpack ifxjdbc.jar and add its directory to CLASSPATH:

cd c:\jdbcdriv\lib

jar xvf ifxjdbc.jar

set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

To add localized message support, specify ifxlang.jar as well:

cd c:\jdbcdriv\lib

jar xvf ifxjdbc.jar

jar xvf ifxlang.jar

set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

End of Windows 2000 Only

Chapter 1. Getting Started 1-11

Note: If you are using javax.sql classes (for example, Datasource), specify

ifxjdbcx.jar in addition to ifxjdbc.jar.

For more information on the jar utility, refer to the Java documentation at

http://java.sun.com.

Using the Driver in an Applet

You can use IBM Informix JDBC Driver in an applet to connect to an Informix

database from a Web browser. The following steps show how to specify

IBM Informix JDBC Driver in the applet and how to ensure that the driver is

correctly downloaded from the Web server.

 To use IBM Informix JDBC Driver in an applet:

1. Install ifxjdbc.jar in the same directory as your applet class file.

2. Specify ifxjdbc.jar in the ARCHIVE attribute of the APPLET tag in your

HTML file, as shown in the following example:

<APPLET ARCHIVE=ifxjdbc.jar CODE=my_applet.class

CODEBASE=http://www.myhost.com WIDTH=460 HEIGHT=160>

</APPLET>

Important: Some browsers do not support the ARCHIVE attribute of the

APPLET tag. If this is true of your browser, unpack and install the

ifxjdbc.jar file in the root directory of your Web server. If your

browser also does not support the JDBC API, you must install the

class files included in the java.sql package in the root directory of

the Web server as well. See your Web server documentation for

information on installing files in the root directory.

 Because unsigned applets cannot access some system resources for security

reasons, the following features of IBM Informix JDBC Driver do not work for

unsigned applets:

v sqlhosts file and LDAP server access. The host name and port number

properties in the database URL are optional if you are referencing an

sqlhosts file directly or through an LDAP server.

For unsigned applets, however, the host name and the port number are

always required, unless your applet is using the HTTP proxy server. For

more information on the HTTP proxy server, see “Using an HTTP Proxy

Server” on page 2-27.

v LOBCACHE=0. Setting the LOBCACHE environment variable to 0 in the

database URL specifies that a smart large object is always stored in a file.

This setting is not supported for unsigned applets.

1-12 IBM Informix JDBC Driver Programmer’s Guide

http://java.sun.com/j2se/1.3/docs/guide/jar/

Tip: You can enable these features for unsigned applets using Microsoft

Internet Explorer, which provides an option to configure the applet

permissions.

To access a database on a different host or behind a firewall from an applet,

you can use the Informix HTTP proxy servlet in a middle tier. For more

information, see “Using an HTTP Proxy Server” on page 2-27.

Uninstalling the Driver

When you install IBM Informix JDBC Driver, the installation program creates

an uninstall package in the directory in which you installed the JDBC Driver.

Uninstalling IBM Informix JDBC Driver completely removes the driver and

all of its components from your computer.

The following section describes how to uninstall IBM Informix JDBC Driver

on all platforms.

Tip: If the <destination-dir> in which you installed the IBM Informix JDBC

Driver includes spaces in its pathname, enclose the entire pathname in

quotation marks when executing the uninstall command.

 To uninstall IBM Informix JDBC Driver in graphical mode:

 Execute the following command to launch the uninstall program in GUI

mode:

java -cp <destination-dir>/_uninst/uninstall.jar run

Where <destination-dir> is the directory in which you installed the

IBM Informix JDBC Driver.

The Uninstall program guides you through the uninstallation.

 To uninstall IBM Informix JDBC Driver in console mode:

 Execute the following command to launch the uninstall program in console

mode:

java -cp <destination-dir>/_uninst/uninstall.jar run -console

Where <destination-dir> is the directory in which you installed the

IBM Informix JDBC Driver.

The messages in the console screen guide you through the uninstallation.

 To uninstall IBM Informix JDBC Driver in silent mode:

Chapter 1. Getting Started 1-13

Execute the following command to launch the uninstall program in silent

mode:

java -cp <destination-dir>/_uninst/uninstall.jar run -silent

Where <destination-dir> is the directory in which you installed the

IBM Informix JDBC Driver.

The Uninstall program does not send you any messages but uninstalls the

driver.

1-14 IBM Informix JDBC Driver Programmer’s Guide

Chapter 2. Connecting to the Database

Loading IBM Informix JDBC Driver . 2-3

Using a DataSource Object . 2-3

Using the DriverManager.getConnection() Method 2-6

Format of Database URLs . 2-7

IP Address in Connection URLs . 2-10

Database Versus Database Server Connections 2-10

Specifying Properties . 2-12

Using Informix Environment Variables . 2-13

Dynamically Reading the Informix sqlhosts File 2-20

Connection Property Syntax . 2-21

Administration Requirements . 2-22

Utilities to Update the LDAP Server with sqlhosts Data 2-22

SqlhUpload . 2-22

SqlhDelete . 2-23

Using High-Availability Data Replication . 2-23

Secondary Server Connection Properties . 2-24

Checking for Read-Only Status . 2-24

Retrying Connections . 2-25

Using an HTTP Proxy Server . 2-27

Configuring Your Environment to Use a Proxy Server 2-27

Specifying a Timeout . 2-29

Using the Proxy with an LDAP Server . 2-30

Specifying Where LDAP Lookup Occurs 2-31

Specifying sqlhosts File Lookup . 2-31

Using Other Multitier Solutions . 2-31

Encryption Options . 2-32

Using the JCE Security Package . 2-32

Using Password Encryption . 2-33

Configuring the Database Server . 2-33

Using Network Encryption . 2-33

Network Encryption Syntax . 2-34

Using Option Tags . 2-34

Using Option Parameters . 2-35

Configuring the Encryption CSM in the Server 2-36

PAM Authentication Method . 2-36

Using PAM in JDBC . 2-38

Closing the Connection . 2-38

In This Chapter

This chapter explains the information you need to use IBM Informix JDBC

Driver to connect to an Informix database. The chapter includes the following

sections:

v Loading IBM Informix JDBC Driver

© Copyright IBM Corp. 1996, 2004 2-1

v Using a DataSource Object

v Using the DriverManager.getConnection() Method

v Using Informix Environment Variables

v Dynamically Reading the Informix sqlhosts File

v Using High-Availability Data Replication

v Using an HTTP Proxy Server

v Using Other Multitier Solutions

v Using Password Encryption

v Using Network Encryption

v Closing the Connection

You must first establish a connection to an Informix database server or

database before you can start sending queries and receiving results in your

Java program.

You establish a connection by completing two actions:

1. Load IBM Informix JDBC Driver.

2. Create a connection to either a database server or a specific database in

one of the following ways:

v Use a DataSource object.

v Use the DriverManager.getConnection method.

Using a DataSource object is preferable to using the

DriverManager.getConnection method because a DataSource object is

portable and allows the details about the underlying data source to be

transparent to the application. The target data source implementation can be

modified, or the application can be redirected to a different server without

affecting the application code.

A DataSource object can also provide support for connection pooling and

distributed transactions. In addition, Enterprise Java Beans and J2EE require a

DataSource object.

The following additional connection options are available:

v Setting environment variables

v Dynamically reading the Informix sqlhosts file

v Using an HTTP proxy server

v Using password encryption

v Using network encryption

2-2 IBM Informix JDBC Driver Programmer’s Guide

Loading IBM Informix JDBC Driver

To load IBM Informix JDBC Driver, use the Class.forName() method, passing

it the value com.informix.jdbc.IfxDriver:

try

 {

 Class.forName("com.informix.jdbc.IfxDriver");

 }

catch (Exception e)

 {

 System.out.println("ERROR: failed to load Informix JDBC driver.");

 e.printStackTrace();

 return;

 }

The Class.forName() method loads the Informix implementation of the Driver

class, IfxDriver. IfxDriver then creates an instance of the driver and registers

it with the DriverManager class.

Once you have loaded IBM Informix JDBC Driver, you are ready to connect

to an Informix database or database server.

Windows 2000 Only

If you are writing an applet to be viewed with Microsoft Internet Explorer,

you might need to explicitly register IBM Informix JDBC Driver to avoid

platform incompatibilities.

To explicitly register the driver, use the DriverManager.registerDriver()

method:

DriverManager.registerDriver(com.informix.jdbc.IfxDriver)

 Class.forName("com.informix.jdbc.IfxDriver").newInstance());

This method might register IBM Informix JDBC Driver twice, which does not

cause a problem.

End of Windows 2000 Only

Using a DataSource Object

For information about how and why to use a DataSource object, see the

documentation provided by Sun Microsystems, available on the Web at

http://java.sun.com.

IBM Informix JDBC Driver extends the standard DataSource interface to

allow connection properties (both the standard properties and Informix

environment variables) to be defined in a DataSource object instead of

through the URL.

Chapter 2. Connecting to the Database 2-3

http://java.sun.com/products/jdk/1.2

The following table describes how Informix connection properties correspond

to DataSource properties.

 Informix Connection

Property

DataSource

Property

Data

Type Required? Description

IFXHOST None; see

Appendix B for

how to set

IFXHOST.

String Yes for

client-side

JDBC, unless

SQLH_TYPE is

defined; no for

server-side

JDBC

The IP address or the host

name of the computer

running the Informix

database server

PORTNO portNumber int Yes for

client-side

JDBC, unless

SQLH_TYPE is

defined; no for

server-side

JDBC

The port number of the

Informix database server

The port number is listed in

the /etc/services file.

DATABASE databaseName String No, except for

connections

from Web

applications

(such as a

browser)

running in the

database server

The name of the Informix

database to which you want

to connect

If you do not specify the

name of a database, a

connection is made to the

Informix database server.

INFORMIXSERVER serverName String Yes for

client-side

JDBC; ignored

for server-side

JDBC

The name of the Informix

database server to which

you want to connect

USER user String Yes The user name controls (or

determines) the session

privileges when connected

to the Informix database or

database server

Normally, you must specify

both user name and

password; however, if the

user running the JDBC

application is trusted by the

DBMS, you may omit both.

2-4 IBM Informix JDBC Driver Programmer’s Guide

Informix Connection

Property

DataSource

Property

Data

Type Required? Description

PASSWORD password String Yes The password of the user

Normally, you must specify

both the user name and the

password; however, if the

user running the JDBC

application is trusted by the

DBMS, you may omit both.

None description String Yes A description of the

DataSource object

None dataSourceName String No The name of an underlying

ConnectionPoolDataSource

or XADataSource object for

connection pooling or

distributed transactions

The networkProtocol and roleName properties are not supported by

IBM Informix JDBC Driver.

If an LDAP (Lightweight Directory Access Protocol) server or sqlhosts file

provides the IP address, host name, or port number through the SQLH_TYPE

property, you do not have to specify them using the standard DataSource

properties. For more information, see “Dynamically Reading the Informix

sqlhosts File” on page 2-20.

For a list of supported environment variables (properties), see “Using

Informix Environment Variables” on page 2-13. For a list of Informix

DataSource extensions, which allow you to define environment variable

values and connection pool tuning parameters, see Appendix B, “DataSource

Extensions,” on page B-1. The driver does not consult the user’s environment

to determine environment variable values.

For information about the ConnectionPoolDataSource object, see “Using a

Connection Pool” on page 7-5.

You can use a DataSource object with High-Availability Data Replication. For

more information, see “Using High-Availability Data Replication” on page

2-23.

The following code from the pickaseat example program defines and uses a

DataSource object:

IfxConnectionPoolDataSource cpds = null;

try

{

Chapter 2. Connecting to the Database 2-5

Context initCtx = new InitialContext();

 cpds = new IfxConnectionPoolDataSource();

 cpds.setDescription("Pick-A-Seat Connection pool");

 cpds.setIfxIFXHOST("158.58.60.88");

 cpds.setPortNumber(179);

 cpds.setUser("demo");

 cpds.setPassword("demo");

 cpds.setServerName("ipickdemo_tcp");

 cpds.setDatabaseName("ipickaseat");

 cpds.setIfxGL_DATE("%B %d, %Y");

 initCtx.bind("jdbc/pooling/PickASeat", cpds);

}

catch (Exception e)

{

 System.out.println("Problem with registering the CPDS");

 System.out.println("Error: " + e.toString());

}

The following are examples of the IFX_LOCK_MODE_WAIT connection

property using a DataSource object:

v Example 1
IfxDataSource ds = new IfxDataSource ();

ds. setIfxIFX_LOCK_MODE_WAIT (65); // wait for 65 seconds

...

int waitMode = ds.getIfxIFX_LOCK_MODE_WAIT ();

v Example 2
An example Using DataSource:

IfxDataSource ds = new IfxDataSource ();

ds.setIfxIFX_ISOLATION_LEVEL ("0U"); // set isolation to dirty read with

 retain

 // update locks.

....

String isoLevel = ds.getIfxIFX_ISOLATION_LEVEL ();

Using the DriverManager.getConnection() Method

To create a connection to an Informix database or database server, you can use

the DriverManager.getConnection() method. This method creates a

Connection object, which is used to create SQL statements, send them to an

Informix database, and process the results.

The DriverManager class keeps track of the available drivers and handles

connection requests between appropriate drivers and databases or database

servers. The url parameter of the getConnection() method is a database URL

that specifies the subprotocol (the database connectivity mechanism), the

database or database server identifier, and a list of properties.

2-6 IBM Informix JDBC Driver Programmer’s Guide

A second parameter to the getConnection() method, property, is the property

list. See “Specifying Properties” on page 2-12 for an example of how to

specify a property list.

The following example shows a database URL that connects to a database

called testDB from a client application:

jdbc:informix-sqli://123.45.67.89:1533/testDB:

 INFORMIXSERVER=myserver;user=rdtest;password=test

The details of the database URL syntax are described in the next section.

The following partial example from the CreateDB.java program shows how to

connect to database testDB using DriverManager.getConnection(). In the full

example, the url variable, described in the preceding example, is passed in as

a parameter when the program is run at the command line.

try

 {

 conn = DriverManager.getConnection(url);

 }

catch (SQLException e)

 {

 System.out.println("ERROR: failed to connect!");

 System.out.println("ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

Important: The only Informix connection type supported by IBM Informix

JDBC Driver is tcp. Shared memory and other connection types

are not supported. For more information about connection types,

see the IBM Informix: Administrator's Guide for your database

server.

Important: Not all methods of the Connection interface are supported by

IBM Informix JDBC Driver. For a list of unsupported methods, see

“Unsupported Methods and Methods that Behave Differently” on

page 3-16.

Client applications do not need to explicitly close a connection; the database

server closes the connection automatically. However, if your application is

running in the database server using server-side JDBC, you should explicitly

close the connection.

Format of Database URLs

For connections from a client, use the following format to specify database

URLs:

Chapter 2. Connecting to the Database 2-7

jdbc:informix-sqli://[{ip-address|host-name}:port-number][/dbname]:

 INFORMIXSERVER=servername[;user=user;password=password]

 [;name=value[;name=value]...]

For connections on the database server, use the following format:

jdbc:informix-direct://[/dbname:;[user=user;password=password]]

[;name=value[;name=value]...]

In the preceding syntax:

v Curly brackets ({}) together with vertical lines (|) denote more than one

choice of variable.

v Italics denote a variable value.

v Brackets ([]) denote an optional value.

v Words or symbols not enclosed in brackets are required

(INFORMIXSERVER=, for example).

Blank spaces are not allowed in the database URL.

For example, on the client you might use:

jdbc:informix-sqli://123.45.67.89:1533/testDB:

 INFORMIXSERVER=myserver;user=rdtest;password=test

On the server, you might use:

jdbc:informix-direct://testDB;user=rdtest;password=test

Important: Connections using server-side JDBC have different syntax. For

details, see the IBM Informix: J/Foundation Developer's Guide or the

release notes for your version of the database server.

The following table describes the variable parts of the database URL and the

equivalent Informix connection properties.

 Informix Connection

Property

Database

URL Variable Required? Description

IFXHOST ip-addresshost-
name

Yes for client-side

JDBC, unless

SQLH_TYPE is defined

or IFXHOST is used;

no for server-side JDBC

The IP address or the host name

of the computer running the

Informix database server

PORTNO port-number Yes for client-side

JDBC, unless

SQLH_TYPE is defined

or PORTNO is used; no

for server-side JDBC

The port number of the Informix

database server

The port number is listed in the

/etc/services file.

2-8 IBM Informix JDBC Driver Programmer’s Guide

Informix Connection

Property

Database

URL Variable Required? Description

DATABASE dbname No, except for

connections from Web

applications (such as a

browser) running in the

database server

The name of the Informix

database to which you want to

connect

If you do not specify the name of

a database, a connection is made

to the Informix database server.

INFORMIXSERVER server-name Yes The name of the Informix

database server to which you

want to connect

USER user Yes The name of the user who wants

to connect to the Informix

database or database server

You must specify both the user

and the password or neither. If

you specify neither, the driver

calls System.getProperty() to

obtain the name of the user

currently running the application,

and the client is assumed to be

trusted.

PASSWORD password Yes The password of the user

You must specify both the user

and the password or neither. If

you specify neither, the driver

calls System.getProperty() to

obtain the name of the user

currently running the application,

and the client is assumed to be

trusted.

none name=value No A name-value pair that specifies a

value for the Informix

environment variable contained

in the name variable, recognized

by either IBM Informix JDBC

Driver or Informix database

servers

The name variable is case

insensitive.

See “Specifying Properties” on

page 2-12 and “Using Informix

Environment Variables” on page

2-13 for more information.

Chapter 2. Connecting to the Database 2-9

If an LDAP server or sqlhosts file provides the IP address, host name, or port

number through the SQLH_TYPE property, you do not have to specify them

in the database URL. For more information, see “Dynamically Reading the

Informix sqlhosts File” on page 2-20.

IP Address in Connection URLs

The IBM Informix JDBC Driver, Version 3.0, supporting the JDK 1.4, is IPv6

aware. That is, the code that parses the connection URL can handle the longer

(128-bit mode) IPv6 addresses (as well as IPv4 format). This IP address can be

a IPv6 literal, for example:

3ffe:ffff:ffff:ffff:0:0:0:12

To connect to the IPv6 port with an IDS 10.0 server, use the system property,

for example:

java -Djava.net.preferIPv6Addresses=true ...

With the IBM Informix JDBC Driver, Version 3.0, handling of URLs without

IPv6 literals is unchanged, and legacy behavior is unchanged.

The colon (that is, :) is a key delimiter in a connection URL, especially in IPv6

literal addresses.

You must create a well-formed URL for the driver to recognize an IPv6 literal

address. Note, in the example below:

v The jdbc:informix-sqli:// is required.

v The colons surrounding the 8088, (that is, :8088:) are required.

v The 3ffe:ffff:ffff:ffff:0::12 will not be validated by the driver.

v The 8088 must be a valid number < 32k.
jdbc:informix-sqli://3ffe:ffff:ffff:ffff:0::12:8088:informixserver=X...

Database Versus Database Server Connections

Using the DriveManager.getConnection() method, you can create a

connection to either an Informix database or an Informix database server.

To create a connection to an Informix database, specify the name of the

database in the dbname variable of the database URL. If you omit the name of

a database, a connection is made to the database server specified by the

INFORMIXSERVER environment variable of the database URL or the

connection property list.

If you connect directly to an Informix database server, you can execute an

SQL statement that connects to a database in your Java program.

2-10 IBM Informix JDBC Driver Programmer’s Guide

All connections to both databases and database servers must include the name

of an Informix database server via the INFORMIXSERVER environment

variable.

Important: If you are connecting to an IBM Informix OnLine, IBM Informix

SE 5.x, or IBM Informix SE 7.x database server you must specify

USEV5SERVER=1.

The example given in “Using the DriverManager.getConnection() Method” on

page 2-6 shows how to create a connection directly to the Informix database

called testDB with the database URL.

The following example from the DBConnection.java program shows how to

first create a connection to the Informix database server called myserver and

then connect to the database testDB using the Statement.executeUpdate()

method.

The following database URL is passed in as a parameter to the program when

the program is run at the command line; note that the URL does not include

the name of a database:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;

 user=rdtest;password=test

The code is:

String cmd = null;

int rc;

Connection conn = null;

try

{

 Class.forName("com.informix.jdbc.IfxDriver");

}

catch (Exception e)

{

 System.out.println("ERROR: failed to load Informix JDBC driver.");

}

try

{

 conn = DriverManager.getConnection(newUrl);

}

catch (SQLException e)

{

 System.out.println("ERROR: failed to connect!");

 e.printStackTrace();

 return;

}

try

{

 Statement stmt = conn.createStatement();

 cmd = "database testDB;";

Chapter 2. Connecting to the Database 2-11

rc = stmt.executeUpdate(cmd);

 stmt.close();

}

catch (SQLException e)

{

 System.out.println("ERROR: execution failed - statement:

 " + cmd);

 System.out.println("ERROR: " + e.getMessage()); }

Specifying Properties

When you use the DriverManager.getConnection() method to create a

connection, IBM Informix JDBC Driver reads Informix environment variables

only from the name-value pairs in the connection database URL or from a

connection property list. The driver does not consult the user’s environment

for any environment variables.

To specify Informix environment variables in the name-value pairs of the

connection database URL, refer to “Format of Database URLs” on page 2-7.

To specify Informix environment variables via a property list, use the

java.util.Properties class to build the list of properties. The list of properties

might include Informix environment variables, such as INFORMIXSERVER,

as well as user and password.

After you have built the property list, pass it to the

DriverManager.getConnection() method as a second parameter. You still need

to include a database URL as the first parameter, although in this case you do

not need to include the list of properties in the URL.

The following code from the optofc.java example shows how to use the

java.util.Properties class to set connection properties. It first uses the

Properties.put() method to set the environment variable OPTOFC to 1 in the

connection property list; then it connects to the database.

The DriverManager.getConnection() method in this example takes two

parameters: the database URL and the property list. The example creates a

connection similar to the example given in “Using the

DriverManager.getConnection() Method” on page 2-6.

The following database URL is passed in as a parameter to the example

program when the program is run at the command line:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

 user=rdtest;password=test

The code is:

try

{

 Class.forName("com.informix.jdbc.IfxDriver");

2-12 IBM Informix JDBC Driver Programmer’s Guide

}

catch (Exception e)

 {

 System.out.println("ERROR: failed to load Informix JDBC driver.");

 }

try

 {

 Properties pr = new Properties();

 pr.put("OPTOFC","1");

 conn = DriverManager.getConnection(newUrl, pr);

 }

catch (SQLException e)

 {

 System.out.println("ERROR: failed to connect!");

 }

Using Informix Environment Variables

The following table lists most of the Informix environment variables

supported by the client JDBC driver. For server-side JDBC, you should use

property settings in the database URL rather than setting environment

variables, because the environment variables would apply to all programs

running in the database server. For more information about properties, see

“Specifying Properties” on page 2-12.

For a list of environment variables that provide internationalization features,

see Chapter 6. For a list of environment variables useful for troubleshooting,

see Chapter 7

 Supported Informix Environment

Variables Description

BIG_FET_BUF_SIZE In IBM Informix Extended Parallel Server, Version 8.4, overrides

the default size of the tuple buffer and allows it to be increased

up to 2GB.

CSM To specify that Communication Support Module is to be used.

IBM Informix JDBC Driver 3.0 and later supports an encryption

CSM. For more information, see “Encryption Options” on page

2-32.

DBANSIWARN When set to 1, checks for Informix extensions to ANSI-standard

syntax

DBSPACETEMP Specifies the dbspaces in which temporary tables are built

DBTEMP Specifies the full pathname of the directory into which you want

IBM Informix Enterprise Gateway products to place their

temporary files and temporary tables.

The driver does not use this variable; it just passes the value to

the server.

Chapter 2. Connecting to the Database 2-13

Supported Informix Environment

Variables Description

DBUPSPACE Specifies the amount of system disk space that the UPDATE

STATISTICS statement can use when it simultaneously constructs

multiple-column distributions

DELIMIDENT When set to Y, specifies that strings set off by double quotes are

delimited identifiers

ENABLE_CACHE_TYPE When set to 1, caches the data type information for opaque,

distinct, or row data.

When a Struct or SQLData object inserts data into a column and

getSQLTypeName() returns the type name, the driver uses the

cached information instead of querying the database server.

ENABLE_HDRSWITCH When set to true, secondary server properties are used to

connect to the secondary server in an HDR pair, if the primary

server is unavailable.

FET_BUF_SIZE Overrides the default setting for the size of the fetch buffer for

all data except large objects.

The default size is 4096 bytes. This variable is not supported in

server-side JDBC.

IFX_AUTOFREE When set to 1, specifies that the Statement.close() method does

not require a network round trip to free the database server

cursor resources if the cursor has already been closed in the

database server.

The database server automatically frees the cursor resources after

the cursor is closed, either explicitly by the ResultSet.close()

method or implicitly through the OPTOFC environment

variable. After the cursor resources have been freed, the cursor

can no longer be referenced. For more information, see “Using

the Auto Free Feature” on page 3-23.

IFX_BATCHUPDATE_PER_SPEC When set to 1 (the default), returns the number of rows affected

by the SQL statements executed in a batch operation by the

executeBatch() method

IFX_CODESETLOB If set to a number greater than or equal to 0, automates code-set

conversion for TEXT and CLOB data types between client and

database locales. The value of this variable determines whether

code-set conversion is done in memory in or in temporary files.

If set to 0, code-set conversion uses temporary files. If set to a

value greater than 0, code-set conversion occurs in the memory

of the client computer, and the value represents the number of

bytes of memory allocated for the conversion. For more

information, see “Converting Using the IFX_CODESETLOB

Environment Variable” on page 6-14.

2-14 IBM Informix JDBC Driver Programmer’s Guide

Supported Informix Environment

Variables Description

IFX_DIRECTIVES Determines whether the optimizer allows query optimization

directives from within a query. This variable is set on the client.

The driver does not use this variable; it just passes the value to

the server.

IFX_EXTDIRECTIVES Specifies whether the query optimizer allows external query

optimization directives from the sysdirectives system catalog

table to be applied to queries in existing applications. The

default is OFF. Possible values:

ON External optimizer directives accepted

OFF External optimizer directives not accepted

1 External optimizer directives accepted

0 External optimizer directives not accepted

IFX_GET_SMFLOAT_AS_FLOAT When set to 0 (the default), maps the Informix SMALLFLOAT

data type to the JDBC REAL data type. This setting conforms to

the JDBC specification. When set to 1, maps the Informix

SMALLFLOAT data type to the JDBC FLOAT data type. This

setting enables backward compatibility with older versions of

IBM Informix JDBC Driver.

IFX_ISOLATION_LEVEL Defines the degree of concurrency among processes that attempt

to access the same rows simultaneously. Gets the value of

Informix-specific variable IFX_ISOLATION_LEVEL. The default

value is 1 (Committed Read). If the value has been set explicitly,

it returns the set value. Returns: integer.

Sets the value of Informix-specific variable

IFX_ISOLATION_LEVEL. Possible values:

v 1 - Dirty Read (equivalent to TRANSACTION_READ_UNCOMMITTED),

v 2 - Committed Read (equivalent to

TRANSACTION_READ_COMMITTED),

v 3 - Cursor Stability (equivalent to

TRANSACTION_READ_COMMITTED),

v 4 - Repeatable Read (equivalent to

TRANSACTION_REPEATABLE_READ)

Specifying U after the mode means retain update locks. (See

Important note following table.) For example, a value could be:

2U (equivalent to SET ISOLATION TO COMMITTED READ RETAIN

UPDATE LOCKS.

Chapter 2. Connecting to the Database 2-15

Supported Informix Environment

Variables Description

IFX_LOCK_MODE_WAIT Application can use this property to override the default server

process for accessing a locked row or table. Gets the value of

Informix-specific variable IFX_LOCK_MODE_WAIT. The default

value is 0 (do not wait for the lock). If the value has been set

explicitly, it returns the set value. Returns: integer.

Sets the value of Informix-specific variable

IFX_LOCK_MODE_WAIT. Possible values:

v -1 WAIT until the lock is released.

v 0 DO NOT WAIT, end the operation, and return with error.

v nn WAIT for nn seconds for the lock to be released.

IFX_PADVARCHAR Controls how data associated with a VARCHAR data type is

transmitted to and from a Dynamic Server 9.4 or later server.

Can be set either on the connection URL when using the

Connection class or as a property when using the DataSource

class. Valid values are 0 (the default) and 1.

v When set to 0, only the portion of the VARCHAR that

contains data is transmitted (trailing spaces are stripped).

v When set to 1, the entire VARCHAR data structure is

transmitted to and from the server.

IFX_SET_FLOAT_AS_SMFLOAT When set to 0 (the default), maps the JDBC FLOAT data type to

the Informix FLOAT data type. This setting conforms to the

JDBC specification. When set to 1, maps the JDBC FLOAT data

type to the Informix SMALLFLOAT data type. This setting

enables backward compatibility with older versions of

IBM Informix JDBC Driver.

IFX_USEPUT When set to 1, enables bulk inserts. For more information, see

“Performing Bulk Inserts” on page 3-7.

IFX_XASPEC When set to y, XA transactions with the same global transaction

ID are tightly coupled and share the lock space. This only

applies to XA connections and cannot be specified in a database

URL. It can be specified by DataSource setter (See Appendix B,

“DataSource Extensions,” on page B-1.) or by setting a System

(JVM) property with the same name. The DataSource property

will override the System property. Values for the properties other

than y, Y, n, or N are ignored. IfxDataSource.getIfxIFX_XASPEC

returns the final IFX_SPEC value, which is either y or n. For

example if the value of DataSource IFX_XASPEC equals n and

the value of the System IFX_XASPEC equals Y or y, n will be

returned.

2-16 IBM Informix JDBC Driver Programmer’s Guide

Supported Informix Environment

Variables Description

IFX_XASTDCOMPLIANCE_XAEND Specifies the behavior of XA_END when XA_RB* is returned.

1 XID is not forgotten. Transaction is in Rollback Only

state. This is XA_SPEC+ compliant and is the default

behavior with IDS 10.0.

2 XID is forgotten. Transaction is Nonexistent. This is

default behavior with IDS 9.40.

 For more information, see IBM Informix: Guide to SQL

Reference

DISABLE_B162428_XA_FIX (IDS 10.0)

ENABLE_B162428_XA_FIX (IDS 9.40)

IFXHOST Sets the host name or host IP address

IFXHOST_SECONDARY Sets the secondary host name or host IP address for HDR

connection redirection

INFORMIXCONRETRY Specifies the maximum number of additional connection

attempts that can be made to each database server by the client

during the time limit specified by the value of

INFORMIXCONTIME

INFORMIXCONTIME Sets the timeout period for an attempt to connect to the database

server. If a connection attempt does not succeed in this time, the

attempt is aborted and a connection error is reported. The

default value is 0 seconds. This variable adds timeouts for

blocking socket methods and for socket connections.

INFORMIXOPCACHE Specifies the size of the memory cache for the staging-area

blobspace of the client application

INFORMIXSERVER Specifies the default database server to which an explicit or

implicit connection is made by a client application

INFORMIXSERVER_SECONDARY Specifies the secondary database server in an HDR pair to which

an explicit or implicit connection is made by a client application

if the primary database server is unavailable

INFORMIXSTACKSIZE Specifies the stack size, in kilobytes, that the database server

uses for a particular client session

JDBCTEMP Specifies where temporary files for handling smart large objects

are created. You must supply an absolute pathname.

Chapter 2. Connecting to the Database 2-17

Supported Informix Environment

Variables Description

LOBCACHE Determines the buffer size for large object data that is fetched

from the database server Possible values are:

v A number greater than 0. The maximum number of bytes is

allocated in memory to hold the data. If the data size exceeds

the LOBCACHE value, the data is stored in a temporary file;

if a security violation occurs during creation of this file, the

data is stored in memory.

v Zero (0). The data is always stored in a file. If a security

violation occurs, the driver makes no attempt to store the data

in memory.

v A negative number. The data is always stored in memory. If

the required amount of memory is not available, an error

occurs.

If the LOBCACHE value is not specified, the default is 4096

bytes.

NEWNLSMAP Allows new mappings between NLS and JDK locales and JDK

codesets to be defined

For more information, see “User-Defined Locales” on page 6-16.

NODEFDAC When set to YES, prevents default table and routine privileges

from being granted to the PUBLIC user when a new table or

routine is created in a database that is not ANSI compliant.

Default is NO.

OPT_GOAL Specifies the query performance goal for the optimizer. Set this

variable in the user environment before you start an application.

The driver does not use this variable; it just passes the value to

the server.

OPTCOMPIND Specifies the join method that the query optimizer uses

OPTOFC When set to 1, the ResultSet.close() method does not require a

network round trip if all the qualifying rows have already been

retrieved in the client’s tuple buffer. The database server

automatically closes the cursor after all the rows have been

retrieved. IBM Informix JDBC Driver might not have additional

rows in the client’s tuple buffer before the next ResultSet.next()

method is called. Therefore, unless IBM Informix JDBC Driver

has received all the rows from the database server, the

ResultSet.close() method might still require a network round

trip when OPTOFC is set to 1.

PATH Specifies the directories that should be searched for executable

programs

PDQPRIORITY Determines the degree of parallelism used by the database

server

2-18 IBM Informix JDBC Driver Programmer’s Guide

Supported Informix Environment

Variables Description

PLCONFIG Specifies the name of the configuration file used by the

high-performance loader

PLOAD_LO_PATH Specifies the pathname for smart-large-object handles (which

identify the location of smart large objects such as BLOB, CLOB,

and BOOLEAN data types).

The driver does not use this variable; it just passes the value to

the server.

PORTNO_SECONDARY Specifies the port number of the secondary database server in an

HDR pair. The port number is listed in the /etc/services file.

PROXY Specifies an HTTP proxy server. For more information, see

“Using an HTTP Proxy Server” on page 2-27.

PSORT_DBTEMP Specifies one or more directories to which the database server

writes the temporary files it uses when performing a sort

PSORT_NPROCS Enables the database server to improve the performance of the

parallel-process sorting package by allocating more threads for

sorting

SECURITY Uses 56-bit encryption to send the password to the server. For

more information, see “Using Password Encryption” on page

2-33.

SQLH_TYPE When set to FILE, specifies that database information (such as

host-name, port-number, user, and password) is specified in an

sqlhosts file.

When set to LDAP, specifies that this information is specified in

an LDAP server.

For more information, see “Dynamically Reading the Informix

sqlhosts File” on page 2-20.

STMT_CACHE When set to 1, enables the use of the shared-statement cache in a

session.

This feature can reduce memory consumption and speed query

processing among different user sessions. The driver does not

use this variable; it just passes the value to the server.

USEV5SERVER When set to 1, specifies that the Java program is connecting to

an IBM Informix OnLine 5.x or IBM Informix SE 5.x or

IBM Informix SE 7.x database server.

This environment variable is mandatory if you are connecting to

an IBM Informix OnLine 5.x or IBM Informix SE 5.x or

IBM Informix SE 7.x database server.

Important: RETAIN UPDATE LOCKS is not supported in IBM Informix

Dynamic Server, Version 5.x. The U option will be ignored when

connecting to a 5.x server.

Chapter 2. Connecting to the Database 2-19

The following are code examples of the IFX_LOCK_MODE_WAIT and

IFX_ISOLATION_LEVEL environment variables:

v IFX_LOCK_MODE_WAIT
Connection conn = DriverManager.getConnection ("jdbc:Informix-sqli://cleo:1550:

INFORMIXSERVER=cleo_921;IFXHOST=cleo;PORTNO=1550;user=rdtest; password=my_passwd;

IFX_LOCK_MODE_WAIT=1";);

v IFX_ISOLATION_LEVEL
Connection conn = DriverManager.getConnection("jdbc:Informix-sqli://cleo:1550:

INFORMIXSERVER=cleo_921;IFXHOST=cleo;PORTNO=1550;user=rdtest; password=my_passwd;

IFX_ISOLATION_LEVEL=1U";);

Important: The isolation property can be set in the URL only when it is an

explicit connection to a database. For server-only connection, this

property is ignored at connection time.

For a detailed description of a particular environment variable, refer to

IBM Informix: Guide to SQL Reference. You can find the online version of this

guide at http://www.ibm.com/software/data/informix/pubs/library/.

Dynamically Reading the Informix sqlhosts File

IBM Informix JDBC Driver supports the JNDI (Java naming and directory

interface). This support enables JDBC programs to access the Informix

sqlhosts file. The sqlhosts file lets a client application find and connect to an

Informix database server anywhere on the network. For more information

about this file, see the IBM Informix: Administrator's Guide for your database

server.

You can access sqlhosts data from a local file or from an LDAP server. The

system administrator must load the sqlhosts data into the LDAP server using

an Informix utility.

Your CLASSPATH variable must reference the JNDI JAR (Java archive) files

and the LDAP SPI (service provider interface) JAR files. You must use LDAP

Version 3.0 or later, which supports the object class extensibleObject.

You can use the sqlhosts file group option to specify the name of a database

server group for the value of INFORMIXSERVER. The group option is useful with

High-Availability Data Replication (HDR); list the primary and secondary

database servers in the HDR pair sequentially. For more information on about

how to set or use groups in sqlhosts file, see the IBM Informix: Administrator's

Guide. For more information on HDR, see “Using High-Availability Data

Replication” on page 2-23.

An unsigned applet cannot access the sqlhosts file or an LDAP server. For

more information, see “Using the Driver in an Applet” on page 1-12.

2-20 IBM Informix JDBC Driver Programmer’s Guide

Connection Property Syntax

You can let IBM Informix JDBC Driver look up the host name or port number

in an LDAP server instead of specifying them in a database URL or

DataSource object directly. You must specify the following properties in the

database URL or DataSource object for the LDAP server:

v SQLH_TYPE=LDAP

v LDAP_URL=ldap://host-name:port-number

host-name and port-number are those of the LDAP server, not the database

server.

v LDAP_IFXBASE=Informix-base-DN

v LDAP_USER=user

v LDAP_PASSWD=password

If LDAP_USER and LDAP_PASSWD are not specified, IBM Informix JDBC

Driver uses an anonymous search to search the LDAP server. The LDAP

administrator must make sure that an anonymous search is allowed on the

sqlhosts entry. For more information, see your LDAP server documentation.

Informix-base-DN has the following basic format:

cn=common-name,o=organization,c=country

If common-name, organization, or country consists of more than one word, you

can use one entry for each word. For example:

cn=informix,cn=software

Here is an example database URL:

jdbc:informix-sqli:informixserver=value;SQLH_TYPE=LDAP;

 LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,

 cn=software,o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret

You can also specify the sqlhosts file in the database URL or DataSource

object. The host name and port number are read from the sqlhosts file. You

must specify the following properties for the file:

v SQLH_TYPE=FILE

v SQLH_FILE=sqlhosts-filename

The sqlhosts file can be local or remote, so you can refer to it in the local file

system format or URL format. Here are some examples:

v SQLH_FILE=http://host-name:port-number/sqlhosts.ius

The host-name and port-number elements are those of the server on which

the sqlhosts file resides.

v SQLH_FILE=file://D:/local/myown/sqlhosts.ius

v SQLH_FILE=/u/local/sqlhosts.ius

Chapter 2. Connecting to the Database 2-21

Here is an example database URL:

jdbc:informix-sqli:informixserver=value;SQLH_TYPE=FILE;

 SQLH_FILE=/u/local/sqlhosts.ius

If the database URL or DataSource object references the LDAP server or

sqlhosts file but also directly specifies the IP address, host name, and port

number, then the IP address, host name, and port number specified in the

database URL or DataSource object take precedence. For information about

how to set these connection properties using a DataSource object, see

Appendix B, “DataSource Extensions,” on page B-1.

If you are using an applet or the database is behind a firewall, an HTTP proxy

servlet, running in an extra tier, is required for communication. See “Using an

HTTP Proxy Server” on page 2-27 for more information.

Administration Requirements

If you want the LDAP server to store sqlhosts information that a JDBC

program can look up, the following requirements must be met:

v The LDAP server must be installed on a computer that is accessible to the

client. The LDAP administrator must create an IFXBASE entry in the LDAP

server.

For more information about LDAP directory servers, see:

http://java.sun.com/products/jndi/

http://www.openldap.org

v If you want to use the Informix SqlhUpload and SqlhDelete utilities,

which can load or delete the sqlhosts entries from a flat ASCII file, the

servicename field in the sqlhosts file must specify the database server’s

port number. For more information, see “Utilities to Update the LDAP

Server with sqlhosts Data,” next.

v The LDAP administrator must make sure that anonymous search is allowed

on the sqlhosts entry. For more information, see the LDAP server

documentation.

Utilities to Update the LDAP Server with sqlhosts Data

The SqlhUpload and SqlhDelete utilities are packaged in ifxtools.jar, so the

CLASSPATH variable must point to ifxtools.jar (which, by default, is in the

lib directory under the installation directory for IBM Informix JDBC Driver).

Make sure that the CLASSPATH variable also points to the JNDI JAR files

and LDAP SPI JAR files.

SqlhUpload

This utility loads the sqlhosts entries from a flat ASCII file to the LDAP

server in the prescribed format. Enter the following command:

java SqlhUpload sqlhfile.txt host-name:port-number [sqlhostsRdn]

2-22 IBM Informix JDBC Driver Programmer’s Guide

http://java.sun.com/products/jndi/
http://www.openldap.org

The parameters have the following meanings:

v The sqlhosts file to be uploaded is sqlhfile.txt.

v The host name and port number of the LDAP server is

host-name:port-number.

v The RDN (relative distinguished name) of the sqlhosts node under the

Informix base in LDAP is sqlhostsRdn. The default name is sqlhosts.

The utility prompts for other required information, such as the Informix base

DN (distinguished name) in the LDAP server, the LDAP user, and the

password.

You must convert the servicename field in the sqlhosts file to a string that

represents an integer (the port number), because the Java.Socket class cannot

accept an alphanumeric servicename value for the port number. For more

information about the servicename field, see the IBM Informix: Administrator's

Guide for your database server.

SqlhDelete

This utility deletes the sqlhosts entries from the LDAP server. Enter the

following command:

java SqlhDelete host-name:port-number [sqlhostsRdn]

The parameters of this command have the same meanings as the parameters

listed for SqlhUpload on page 2-23.

The utility prompts for other required information, such as the Informix base

DN in the LDAP server, the LDAP user, and the password.

Using High-Availability Data Replication

High-Availability Data Replication (HDR) provides synchronous data replication

for IBM Informix Dynamic Server by maintaining a backup copy of the entire

database server that applications can access quickly in the event of a

catastrophic failure. If one of the database servers in the replication pair fails,

clients can be redirected to connect to the alternate database server. For more

information on HDR, see the IBM Informix: Administrator's Guide for your

database server.

HDR server pairs are composed of a primary and a secondary server. The

primary server is the default server. The secondary server is read-only; update

operations are not allowed.

To write application code to support HDR, follow these guidelines, which are

explained in the sections below:

v Set the secondary server connection properties and enable HDR.

Chapter 2. Connecting to the Database 2-23

v Check if the server is read-only (a secondary server) and take appropriate

action.

v If a connection fails, retry the connection to the alternate server and rerun

the query.

You can use HDR with connection pooling. For more information, see “Using

High-Availability Data Replication with Connection Pooling” on page 7-8.

Demonstration programs are available in the hdr directory within the demo

directory where IBM Informix JDBC Driver is installed. For details about the

files, see Appendix A.

Secondary Server Connection Properties

Specify the secondary server and enable HDR using the following connection

properties in the connection URL:

v INFORMIXSERVER_SECONDARY = secondary_server;

v PORTNO_SECONDARY = secondary_portnumber;

v IFXHOST_SECONDARY = secondary_hostmachine;

v ENABLE_HDRSWITCH = true;

The following example shows a connection URL for an HDR server pair

named hdr1 and hdr2:

jdbc:informix-sqli://123.45.67.89:1533/testDB:

 INFORMIXSERVER=hdr1;IFXHOST=host1;PORTNO=1500;

 user=rdtest;password=test;INFORMIXSERVER_SECONDARY=hdr2;

 IFXHOST_SECONDARY=host2;PORTNO_SECONDARY=1600;

 ENABLE_HDRSWITCH=true;

When using a DataSource object, you can set and get the secondary server

connection properties with setXXX() and getXXX() methods. These methods

are listed with their corresponding connection property in the section “Getting

and Setting Informix Connection Properties” on page B-3.

You can manually redirect a connection to the secondary server in an HDR

pair by editing the INFORMIXSERVER, PORTNO, and IFXHOST properties in

the connection URL. Manual redirection requires editing the application code

and then restarting the application.

Checking for Read-Only Status

Update operations fail if the connection is to a secondary server, because

secondary servers are read-only. Therefore, you should write applications to

check for read-only connections before starting update operations.

Use the methods in the following table to check the server type and whether

HDR is enabled.

2-24 IBM Informix JDBC Driver Programmer’s Guide

Information Obtained Method Signature Notes

Whether the server is

read-only (a secondary

server)

public boolean is ReadOnly() throws

SQLException

Returns true if the active server is a

secondary server

Returns an exception if a database

access error occurs

If ENABLE_HDRSWITCH is set to

false, isReadOnly() returns the

value initially set after the last

successful HDR connection was

obtained.

Whether HDR is enabled public boolean is HDREnabled() Returns true if both servers in the

HDR pair are available

Returns false if one of the servers is

unavailable

The type of the server

(primary, secondary, or

standard)

public string getHDRtype() Returns primary or standard for a

primary server, secondary for a

secondary server

The database administrator can

manually reset the type of the

server.

For example, you can use one of the following strategies:

v Use the isReadOnly() method before each SQL statement that might

contain an update operation. If the value of isReadOnly() is true, perform

an appropriate action, such as sending an error message to the user or

notifying the server administrator.

v You call the isReadOnly() method after establishing a connection and then

set a flag, like READ_ONLY, and perform operations based on the flag

value.

An administrator can manually switch a secondary server to a primary server

to allow update operations. However, the server must be shut down in the

process, resulting in connections and uncommitted transactions being lost.

Retrying Connections

Write applications so that if a connection is lost during query operations,

IBM Informix JDBC Driver returns a new connection to the secondary

database server and the application reruns the queries.

The following code shows how to retry a connection with the secondary

server information, and then rerun an SQL statement that received an error

because the primary server connection failed:

public class HDRConnect {

 static IfmxConnection conn;

Chapter 2. Connecting to the Database 2-25

public static void main(String[] args)

 {

 getConnection(args[0]);

 doQuery(conn);

 closeConnection();

 }

 static void getConnection(String url)

 {

 ..

 Class.forName("com.informix.jdbc.IfxDriver");

 conn = (IfmxConnection)DriverManager.getConnection(url);

 }

 static void closeConnection()

 {

 try

 {

 conn.close();

 }

 catch (SQLException e)

 {

 System.out.println("ERROR: failed to close the connection!");

 return;

 }

 }

 static void doQuery(Connection con)

 {

 int rc=0;

 String cmd=null;

 Statement stmt = null;

 try

 {

 // execute some sql statement

 }

 catch (SQLException e)

 {

 if (e.getErrorCode() == -79716) || (e.getErrorCode() == -79735)

 // system or internal error

 {

 // This is expected behavior when primary server is down

 getConnection(url);

 doQuery(conn);

 }

 else

 System.out.println("ERROR: execution failed - statement: " + cmd);

 return;

 }

 }

2-26 IBM Informix JDBC Driver Programmer’s Guide

Using an HTTP Proxy Server

Network security imposes certain restrictions on what client applications are

allowed to do:

v Applets can only communicate back to the host from which they were

downloaded.

v Direct IP connections between a JDBC client and database are not allowed

when a firewall is between the client and the database server.

The Informix HTTP proxy handles both of these problems. The proxy is a

servlet that runs in the middle tier between a JDBC client and an Informix

database server. The proxy extracts SQL requests from the JDBC client and

transmits them to the database server. The client (the end user) is unaware of

this middle tier.

The HTTP proxy feature is not part of the JDBC 2.0 specification.

Figure 2-1 illustrates how the proxy enables a connection to a database that is

behind a firewall.

Configuring Your Environment to Use a Proxy Server

The HTTP proxy requires a Web server that supports servlets, preferably a

Web server whose servlet engine uses a 2.1 or greater servlet API. The proxy

is compatible with 2.0 and earlier servlet APIs, but the PROXYTIMEOUT

feature is only enabled with a 2.1 or greater API.

Figure 2-1. Connecting Through a Firewall

Chapter 2. Connecting to the Database 2-27

To configure your environment for a proxy server:

1. Define a servlet alias or context for the proxy servlet in your Web server

configuration.

The JDBC driver directs all client HTTP requests to:

http://your-web-server:port/pathname/IfxJDBCProxy

where IfxJDBCProxy is the proxy servlet and pathname is the path to the

proxy servlet. Consult your Web server documentation for the correct way

to configure servlets.

2. Copy three class files—IfxJDBCProxy.class, SessionMgr.class, and

TimeoutMgr.class—to the servlet directory you specified in the previous

step.

These class files reside in the directory proxy, which is under the

installation directory for IBM Informix JDBC Driver after the product

bundle is installed.

3. Add the IBM Informix JDBC Driver file, ifxjdbc.jar, to the CLASSPATH

setting on your Web server.

Some Web servers use the CLASSPATH of the environment under which

the server is started, while others get their CLASSPATH from a Web

server-specific properties file. Consult your Web server documentation for

the correct place to update the CLASSPATH setting.

4. Start your Web server and verify that the proxy is installed correctly by

entering the following URL:

http://server-host-name:port-number/servlet/

 IfxJDBCProxy

The proxy replies with the following banner:

-- Informix Proxy Servlet v220 Servlet API 2.1 --

v220 represents the Informix proxy version. Servlet API 2.1 represents

the version of your Web server’s servlet API.

If the servlet API is 2.0 or earlier, the banner says Servlet API 0.0.

5. After configuring the proxy, append the following to your applet or

application’s URL:

PROXY=server-host-name:port-number

For example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=

 myserver;user=rdtest;password=test;

 PROXY=webserver:1462;

Depending on your Web server, the proxy servlet might be loaded when the

Web server is started or the first time it is referenced in the URL of your

applet or application connection object.

The following Web sites offer more information about proxy servlets:

2-28 IBM Informix JDBC Driver Programmer’s Guide

v http://java.sun.com/products/servlet/

v http://java.sun.com/

v http://www.sun.com/java

v http://java.apache.org

Specifying a Timeout

You can specify a timeout value for the proxy by using the PROXYTIMEOUT

keyword. The PROXYTIMEOUT value specifies how often the client-side

JDBC driver should send a keepalive request to the proxy. A

PROXYTIMEOUT value is represented in seconds; the value can be 60 or

greater.

When PROXYTIMEOUT is specified by the client, the proxy sets the client’s

session expiration equal to 2 x PROXYTIMEOUT. For example, if

PROXYTIMEOUT is set to 60 seconds, the proxy sets the client’s expiration

time to 120 seconds. When the expiration time is reached, the proxy removes

the client’s session resources and closes its database connection.

The proxy resets the timeout interval each time a communication is received

from the client. Here are some valid values for PROXYTIMEOUT:

PROXYTIMEOUT=-1 Disables the client timeout feature.

PROXYTIMEOUT=nnn Client sends a keepalive request to proxy

every nnn seconds. The nnn value must be 60

or greater.

PROXYTIMEOUT=60 Default value if PROXYTIMEOUT is not

specified

 The proxy timeout feature is helpful in determining if a client session has

terminated without first sending the proxy a close request by closing the

JDBC connection. The proxy maintains an open database connection on behalf

of the client until the client either:

v Explicitly closes the database connection

v Exceeds its timeout interval

The onstat database utility shows an open session for any client sessions that

have unexpectedly terminated and have set PROXYTIMEOUT to -1.

Here is an example that specifies PROXYTIMEOUT:

jdbc:informix-sqli://123.45.67.89:1533:informixserver=myserver;

 user=rdtest;password=test;

 PROXY=webserver:1462?PROXYTIMEOUT=180;

Chapter 2. Connecting to the Database 2-29

http://java.sun.com/products/servlet/
http://java.sun.com/
http://www.sun.com/java
http://java.apache.org

See the demo/proxy directory under the directory where your driver is

installed for an example applet and application that uses the proxy.

Using the Proxy with an LDAP Server

The proxy allows your JDBC applets and applications to alternatively get their

database connection information from an LDAP server. If you plan to use this

feature, you need to install an LDAP server. For general information about

using an LDAP server with IBM Informix JDBC Driver, see the sections

beginning with “Connection Property Syntax” on page 2-21.

Figure 2-2 on page 2-30 illustrates how the proxy works with an LDAP server.

The figure also shows lookup from an sqlhosts file; for more information, see

“Specifying sqlhosts File Lookup” on page 2-31.

The proxy LDAP feature requires the JNDI class libraries and LDAP service

provider files (jndi.jar, ldap.jar, and providerutil.jar). These JAR files can be

downloaded from the following location:

http://java.sun.com/products/jndi/index.html#download.

Figure 2-2. Lookup by the Proxy

2-30 IBM Informix JDBC Driver Programmer’s Guide

http://java.sun.com/products/

After downloading and installing the files, add their full pathnames to the

CLASSPATH setting on your Web server. The files are in the lib directory

under the installation directory.

Specifying Where LDAP Lookup Occurs

When used in conjunction with other LDAP keywords, the SQLH_LOC

keyword indicates where an LDAP lookup should occur.

SQLH_LOC can have a value of either CLIENT or PROXY. If the value is CLIENT,

the driver performs the LDAP lookup on the client side. If the value is PROXY,

the proxy performs the lookup on the server side. If no value is specified, the

driver uses CLIENT as the default value.

Here is the format for an applet or application URL with LDAP keywords that

specifies a server side LDAP lookup:

jdbc:informix-sqli:informixserver=informix-server-name;

PROXY=proxy-hostname-or-ip-address:proxy-port-no?

PROXYTIMEOUT=60;SQLH_TYPE=LDAP;LDAP_URL=ldap:

//ldap-hostname-or-ip-address:ldap-port-no;LDAP_IFXBASE=dc=mydomain,dc=com;SQLH_LOC=PROXY;

This example obtains the database server hostname and port from an LDAP

server:

jdbc:informix-sqli:informixserver=samsara;SQLH_TYPE=LDAP;

LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,

o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret;SQLH_LOC=PROXY;

PROXY=webserver:1462

For a complete example of using an LDAP server with the proxy, see the

proxy applet and application in the demo directory where your JDBC driver

is installed.

Specifying sqlhosts File Lookup

The SQLH_LOC keyword also applies to sqlhosts file lookups when you are

using the proxy. If the URL includes SQLH_LOC =PROXY, the driver reads

the sqlhosts file on the server. If SQLH_LOC =PROXY is not specified, the

driver reads the file on the client.

This example obtains the information from an sqlhosts file on the server:

jdbc:informix-sqli:informixserver=samsara;SQLH_TYPE=FILE;

 SQLH_FILE=/work/9.x/etc/sqlhosts;SQLH_LOC=PROXY;

 PROXY=webserver:1462

Using Other Multitier Solutions

Other ways to use IBM Informix JDBC Driver in a multiple-tier environment

are as follows:

Chapter 2. Connecting to the Database 2-31

v Remote Method Invocation (RMI). IBM Informix JDBC Driver resides on

an application server that is a middle tier between the Java applet or

application and Informix database machines. An example of RMI is

included with IBM Informix JDBC Driver; see Appendix A, “Sample Code

Files,” on page A-1, for details.

v Other communication protocols, such as CORBA. IBM Informix JDBC

Driver resides on an application server that is a middle tier between the

Java applet or application and Informix database computers.

Encryption Options

You can use either password or network encryption to establish the security of

your connection. To use either the password option or to use network

encryption, you must install a JDK Java Cryptography Extension

(JCE)-compliant security package on the JDBC client.

Note: Encryption over the network and password encryption should not be

used together. Thus, password encryption should not be enabled with

the SECURITY environment variable when using JDBC encryption

CSM. JDBC Encryption CSM does encrypt passwords before sending

them over the network.

Using the JCE Security Package

To use either the SECURITY=PASSWORD option or to use JDBC encryption

CSM, you must install a JDK Java Cryptography Extension (JCE)-compliant

security package on the JDBC client and include the installation directory of

the security package in the CLASSPATH variable. If you are using JDK 1.3,

you can download the Sun JCE 1.2.2 or later security package from the Sun

Microsystems web site.

Note: If you are using JDK 1.3, ensure that you use Sun JCE1.2.2 or later since

a problem exists in JCE1.2.1 that causes incorrect MAC generation.

Sun JCE has been integrated into the J2 SDK, Version 1.4, but is available only

in the U.S. or Canada. If your site does not comply with this or other Sun JCE

licensing restrictions, you can try using IBM Informix JDBC Driver with other

JCE-certified security package providers. However, these packages have not

been tested and certified to work with Informix database servers configured

to use the SPWDCSM CSM option or the encryption CSM.

If you are using JDK1.3 to install the Sun JCE package, download the Sun JCE

distribution, extract the .jar file containing the Sun JCE provider packages,

and copy them to jre/lib/ext directory where the JDK is installed. If you

decide to keep Sun JCE provider .jar files at some other location, make sure

that the CLASSPATH environment variable includes the extracted .jar

filename.

2-32 IBM Informix JDBC Driver Programmer’s Guide

Edit the lib/security/java.security file from JDK installation to include the

following two lines:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.crypto.provider.SunJCE

Using Password Encryption

The SECURITY environment variable specifies the security operations that are

performed when the Informix JDBC client and Informix database server

exchange data. The only setting for the SECURITY environment variable

supported in IBM Informix JDBC Driver is PASSWORD.

If PASSWORD is specified, the user-provided password is encrypted using 56-bit

encryption when it is passed from the client to the database server. There is

no default setting.

Here is an example:

String URL = "jdbc:informix-sqli://158.58.10.171:1664:user=myname;

password=mypassord;INFORMIXSERVER=myserver;SECURITY=PASSWORD";

PASSWORD is case insensitive. You can type it in upper or lowercase letters.

Configuring the Database Server

The SECURITY=PASSWORD setting is supported in the 7.31, 8.3 and later,

and 9.x and later versions of the Informix database server. The connection is

rejected if used with any other versions of the server.

If the SECURITY=PASSWORD setting is specified in the IBM Informix JDBC

client, the SPWDCSM csm option must be enabled on the Informix database

server. Otherwise, an error is returned during connection.

To use the SPWDCSM csm server option, which supports password

encryption on the database server, you must configure the server’s sqlhosts

servername option. After this option is set on the server, only clients using the

SECURITY=PASSWORD setting can connect to that server name.

To see if the SPWDCSM csm option is supported for your version of Informix

database server, or for general details on how to configure the CSM options,

see the IBM Informix: Administrator’s Guide for your database server.

Using Network Encryption

IBM Informix Dynamic Server, Version 9.4 and later, enables encryption of

data transmitted over a network using an encryption communication support

module. IBM Informix JDBC Driver, Version 2.21.JC5 and later, makes this

feature available to all JDBC clients by adding a communication support

module (CSM) to the JDBC driver.

Chapter 2. Connecting to the Database 2-33

IBM Informix JDBC encryption module is com.informix.jdbc.Crypto class that

is packaged in the IBM Informix JDBC .jar file. IBM Informix JDBC encryption

CSM is a pure Java implementation that uses services from the Java

Cryptography provider. For information about the Java Cryptography

provider, see the Sun Microsystems web site.

Network Encryption Syntax

To configure network encryption, set the CSM environment variable. The

following illustrates the syntax of the CSM environment variable and

encryption options:

CSM Environment Variable Syntax

�� CSM=(“CLASSNAME=com.informix.jdbc.Crypto”)

,

option tags

config=parameterfile

 ��

 Element Description

option tags Specify the syntax of encryption tags. For

more information, see “Using Option

Tags.”

config=parameterfile Specify encryption options in a file. For

more information, see “Using Option

Parameters” on page 2-35.

IBM Informix JDBC encryption CSM has been tested with the Sun Java

Cryptography provider.

Using Option Tags

The option tags that can be passed on to the encryption CSM are the same as

the encryption option tags that are specified in the CSM configuration file

used by the server or CSDK. There are three option tags: cipher, mac, and

switch.

v The cipher tag defines all ciphers that can be used by the session.

v The mac option defines the message authentication code (MAC) key files to

be used during the MAC generation and the level of MAC generation

utilized.

v The switch tag defines the frequency at which ciphers or secret keys are

renegotiated. The longer the secret key and encryption cipher remain in use,

the more likely that the encryption rules might be broken by an attacker. To

avoid this, cryptologists recommend periodically changing the secret key

and cipher on long-term connections. The default for this renegotiation is

once an hour. By using the switch tag, you can set the time for this

renegotiation in minutes.

2-34 IBM Informix JDBC Driver Programmer’s Guide

For the syntax of these tags, see the Security chapter of the IBM Informix:

Administrator's Guide.

Note that encryption CSM option parameters are separated by a comma and

not by a semicolon. When using a DataSource, getIfxCSM() and setIfxCSM()

methods can be used to get and set CSM as a property. When setting CSM as

a property, make sure that you do not enclose the option string in

parentheses. The following is an example that correctly sets the CSM as a

property:

connProperties.put("CSM","classname=com.informix.jdbc.Crypto,cipher[all],

mac[<builtin>]");

Using Option Parameters

You can configure encryption by creating a file with encryption parameters

and then specifying the filename. The encryption parameters are:

v ENCCSM_CIPHERS: Ciphers to be used

v ENCCSM_MAC: MAC level

v ENCCSM_MACFILES: MAC file location

v ENCCSM_SWITCH: CIPHER and KEY change frequency, separated by a

comma

For the syntax of these parameters, see the Security chapter of the

IBM Informix: Administrator's Guide.

The following is an example that specifies the CSM parameters in a

configuration file:

 String newUrl = "jdbc:informix-sqli:

//beacon:8779/test:INFORMIXSERVER=danon950_beacon_encrypt;

user=rdtest;password=test;

csm=(classname=com.informix.jdbc.Crypto,config=test.cfg)";

 try

 {

 Class.forName("com.informix.jdbc.IfxDriver");

 }catch(Exception e)

 {

 System.out.println("ERROR: failed to load

Informix JDBC driver.");

 }

 try

 {

 Connection con = DriverManager.getConnection(newUrl);

 }

 catch(SQLException e)

 {

 System.out.println("ERROR: failed to connect.");

 e.printStackTrace();

 return;

 }

Chapter 2. Connecting to the Database 2-35

Configuring the Encryption CSM in the Server

To be able to connect to IBM Informix database servers on an encrypted port,

the JDBC client must use JDBC encryption CSM. Also note that when using

JDBC encryption CSM, attempts to connect to IBM Informix database servers

on a non-encrypted port will fail. An instance of IBM Informix Database

server may be configured to listen in on encrypted and non-encrypted ports at

the same time. For details regarding configuring Dynamic Server to use

encryption CSM, see IBM Informix: Dynamic Server Administrator’s Guide.

PAM Authentication Method

The IBM Informix JDBC Driver, Version 2.21. JC5 and later, implements

support for handling PAM (Pluggable Authentication Module)-enabled

Dynamic Server 9.40 and later servers. This implementation supports a

challenge-response dialog between PAM and the end user. To facilitate this

dialog, the JDBC developer must implement the com.informix.jdbc.IfmxPAM

interface. The IfxPAM() method in the IfmxPAM interface acts as the gateway

between PAM and the user.

The IfxPAM() method is called when the JDBC server encounters a PAM

challenge method. The return value from the IfxPAM() method acts as the

response to the challenge message and is sent to PAM.

The signature for the IfxPAM() method is:

public IfxPAMResponse IfxPAM(IfxPAMChallenge challengeMessage)

Two classes, IfxPAMChallenge and IfxPAMResponse, usher messages

between the JDBC driver and PAM. The IfxPAMChallenge class contains the

information that has been sent from PAM to the user.

The challenge message is obtained from the IfxPAMChallenge class using the

getChallenge() method. This message is what is sent directly from PAM

running on Dynamic Server to be routed to the end user. The challenge

messages are listed in the following table.

 Table 2-1. Types of Challenge Messages

Message Description

PAM_PROMPT_ECHO_ON The message is displayed to the user and the

user’s response can be echoed back.

PAM_PROMPT_ECHO_OFF The message is displayed to the user and the

user’s response should be hidden or masked

(that is, when the user enters a password,

asterisks are displayed instead of the exact

characters the user types).

2-36 IBM Informix JDBC Driver Programmer’s Guide

Table 2-1. Types of Challenge Messages (continued)

Message Description

PAM_PROMPT_ERROR_MSG The message is displayed to the user as an

error, with no response required.

PAM_TEXT_INFO_MSG The message is displayed to the user as an

informational message, with no response

required.

Note: The challenge message type is governed by the PAM standard and can

have vendor-specific values. See the PAM standard and vendor-specific

information for possible values and interpretations.

Note: The PAM standard defines the maximum size of a PAM message to be

512 bytes (IfxPAMChallenge.PAM_MAX_MESSAGE_SIZE).

The IfxPAMResponse class is very similar to IfxPAMChallenge, but instead

of being used by PAM to send a message to the user, the IfxPAMResponse

class is used to send a message from the user to PAM. Use the

IfxPAMResponse.setResponse() method to send the challenge-response string

to PAM. However, set the response type (which is set using the

IfxPAMResponse.setResponseType() method) to zero, the default, as the

response type is currently reserved for future use.

The challenge-response string is limited to the size of the challenge message:

IfxPAMResponse.PAM_MAX_MESSAGE_SIZE or 512 bytes. If the response

string exceeds this limit, an SQL exception is thrown.

Additionally, when the challenge message is of type PAM_INFO_TEXT or

PAM_PROMPT_ERR_MSG (see PAM standards for meaning and integer

values), PAM expects no user response. Thus, a null IfxPAMResponse object

or one that has not been set with specific values can be returned to JDBC. The

IfxPAMResponse class provides the following method to allow the JDBC

developer to abort the connection attempt during a PAM session:

public void setTerminateConnection(boolean flag)

The value of the flag can be TRUE or FALSE. If the value of the parameter

passed to setTerminateConnection is TRUE, then the connection to the

PAM-enabled Dynamic Server immediately terminates upon returning from

IfxPAM(). If the value is set to FALSE, then the connection attempt to the

PAM-enabled server continues as usual.

Chapter 2. Connecting to the Database 2-37

Using PAM in JDBC

JDBC developers using PAM to communicate with a PAM-enabled Dynamic

Server must implement the com.informix.jdbc.IfmxPAM interface. To do so,

put the following on the class declaration line in a Java class file:

implements IfmxPAM

That Java class must then implement the IfmxPAM interface conforming to

Java standards and the details provided above. The next step is to inform the

JDBC driver what Java class has implemented the IfmxPAM interface. There

are two ways to do this:

v Add the key-value pair IFX_PAM_CLASS=your.class.name to the connection

URL, where the value your.class.name is the path to the class that has

implemented the IfmxPAM interface.

This method is typically used when connecting to a Dynamic Server using

the DriverManager.getConnection (URL) approach.

v Add the property IFX_PAM_CLASS with the value your.class.name to your

properties list before attempting the connection to the PAM-enabled server.

This method is used when connecting to a Dynamic Server using the

DataSource.getConnection() approach.

JDBC developers have a wide latitude in implementing the IfmxPAM

interface. The following actions happen during authentication using PAM:

1. The JDBC driver, when detecting communication with a PAM-enabled

server, contacts the IfxPAM() method and passes it a IfxPAMChallenge

object containing the PAM challenge question.

2. A dialog box you create appears with a text question containing the

challenge message that was sent by PAM.

3. When the user furnishes the response, it is packaged into an

IfxPAMResponse object, and it is returned to the JDBC driver by exiting

the IfxPAM() method returning the IfxPAMResponse object.

4. When PAM receives the response from the challenge question, it can

authorize the user, deny access to the user, or issue another challenge

question, in which case the above process is repeated.

This process continues until either the user is authorized or the user is denied

access. The Java developer or user can terminate the PAM authorization

sequence by calling the IfxPAMResponse.setTerminateConnection() method

with a value of TRUE.

Closing the Connection

The following table contrasts the different effects of calling the

Connection.close() and scrubConnection() methods in environments that use

connection pooling and those that do not.

2-38 IBM Informix JDBC Driver Programmer’s Guide

For more information on deallocating resources, see “Deallocating Resources”

on page 3-3. For more information on the scrubConnection() method, see

“Cleaning Pooled Connections” on page 7-9.

 Connection

Pooling Status

Effect of Calling

Connection.close() Method Effect of Calling scrubConnection() Method

Non-connection

pool setup

Closes database connection, all

associated statement objects, and

their result sets Connection is no

longer valid.

Returns connection to original state, keeps opened

statements, but closes result sets Connection is

still valid.

Releases resources associated with result sets only.

Connection pool

with Informix

Implementation

Closes connection to the

database and reopens it to close

any statements associated with

the connection object and reset

the connection to its original

state Connection object is then

returned to the connection pool

and is available when requested

by a new application connection.

Returns a connection to original state and keeps

all open statements, but closes all result sets

Calling this method in this situation not

recommended

Connection pool

with application

server

implementation

Defined by your connection

pooling implementation

Returns connection to original state and retains

opened statements, but closes result sets

This functionality can be useful if you are using

the JDBC 3.0 feature of statement pooling with

connections. When your application calls the

Connection.close() method, your application

server’s connection-pool manager can call

scrubConnection() for the pooled connection

object before returning the object to the

connection pool.

Important: When calling the scrubConnection() method, your applications

should be using server-only connections.

Chapter 2. Connecting to the Database 2-39

2-40 IBM Informix JDBC Driver Programmer’s Guide

Chapter 3. Performing Database Operations

Querying the Database . 3-2

Example of Sending a Query to an Informix Database 3-2

Using Result Sets . 3-3

Deallocating Resources . 3-3

Executing Across Threads . 3-4

Using Scroll Cursors . 3-4

Scroll Sensitivity . 3-4

Client-Side Scrolling . 3-4

Result Set Updatability . 3-4

Using Hold Cursors . 3-5

Updating the Database . 3-5

Performing Batch Updates . 3-6

SQL Statements and Batch Updates . 3-6

Return Value from Statement.executeBatch() Method 3-6

Performing Bulk Inserts . 3-7

Parameters, Escape Syntax, and Unsupported Methods 3-7

Using CallableStatement OUT Parameters 3-7

Server and Driver Restrictions and Limitations 3-8

JDBC Support for DESCRIBE INPUT . 3-14

Using Escape Syntax . 3-16

Unsupported Methods and Methods that Behave Differently 3-16

Handling Transactions . 3-18

Handling Errors . 3-19

Handling Errors With the SQLException Class 3-19

Retrieving the Syntax Error Offset . 3-20

Catching RSAM Error Messages . 3-21

Handling Errors with the com.informix.jdbc.Message Class 3-21

Accessing Database Metadata . 3-21

Other Informix Extensions to the JDBC API . 3-23

Using the Auto Free Feature . 3-23

Obtaining Driver Version Information . 3-24

Storing and Retrieving XML Documents . 3-24

Setting Up Your Environment to Use XML Methods 3-25

Setting Your CLASSPATH . 3-25

Specifying a Parser Factory . 3-26

Inserting Data . 3-27

Retrieving Data . 3-28

Inserting Data Examples . 3-29

XMLtoString() Examples . 3-29

XMLtoInputStream() Example . 3-29

Retrieving Data Examples . 3-30

StringtoDOM() Example . 3-30

InputStreamtoDOM() Example . 3-30

© Copyright IBM Corp. 1996, 2004 3-1

getInputSource() Examples . 3-31

In This Chapter

This chapter explains what you need to use IBM Informix JDBC Driver to

perform operations against an Informix database. This chapter includes the

following sections:

v Querying the Database

v Updating the Database

v Parameters, Escape Syntax, and Unsupported Methods

Querying the Database

IBM Informix JDBC Driver complies with the JDBC API specification for

sending queries to a database and retrieving the results. The driver supports

most of the methods of the Statement, PreparedStatement,

CallableStatement, ResultSet, and ResultSetMetaData interfaces.

The following sections discuss querying the database and describe Informix

differences from and extensions to the JDBC 3.0 specification from Sun

Microsystems:

v Example of Sending a Query to an Informix Database

v Using Result Sets

v Deallocating Resources

v Executing Across Threads

v Using Scroll Cursors

v Using Hold Cursors

Example of Sending a Query to an Informix Database

The following example from the SimpleSelect.java program shows how to

use the PreparedStatement interface to execute a SELECT statement that has

one input parameter:

try

 {

 PreparedStatement pstmt = conn.prepareStatement("Select *

 from x "

 + "where a = ?;");

 pstmt.setInt(1, 11);

 ResultSet r = pstmt.executeQuery();

 while(r.next())

 {

 short i = r.getShort(1);

 System.out.println("Select: column a = " + i);

 }

 r.close();

 pstmt.close();

3-2 IBM Informix JDBC Driver Programmer’s Guide

}

catch (SQLException e)

 {

 System.out.println("ERROR: Fetch statement failed: " +

 e.getMessage());

 }

The program first uses the Connection.prepareStatement() method to prepare

the SELECT statement with its single input parameter. It then assigns a value

to the parameter using the PreparedStatement.setInt() method and executes

the query with the PreparedStatement.executeQuery() method.

The program returns resulting rows in a ResultSet object, through which the

program iterates with the ResultSet.next() method. The program retrieves

individual column values with the ResultSet.getShort() method, since the

data type of the selected column is SMALLINT.

Finally, both the ResultSet and PreparedStatement objects are explicitly

closed with the appropriate close() method.

For more information on which getXXX() methods retrieve individual column

values, refer to “Data Type Mapping for ResultSet.getXXX() Methods” on page

C-14.

Using Result Sets

The IBM Informix JDBC Driver implementation of the Statement.execute()

method returns a single ResultSet object. Because the server does not support

multiple ResultSet objects, this implementation differs from the JDBC API

specification, which states that the Statement.execute() method can return

multiple ResultSet objects.

Deallocating Resources

Close a Statement, PreparedStatement, and CallableStatement object by

calling the appropriate close() method in your Java program when you have

finished processing the results of an SQL statement. This closure immediately

deallocates the resources that have been allocated to execute your SQL

statement. Although the ResultSet.close() method closes the ResultSet object,

it does not deallocate the resources allocated to the Statement,

PreparedStatement, or CallableStatement objects.

It is good practice to call ResultSet.close() and Statement.close() methods

when you have finished processing the results of an SQL statement, to

indicate to IBM Informix JDBC Driver that you are done with the statement

or result set. When you do so, your program releases all its resources on the

database server. It is, however, not required to call ResultSet.close() and

Statement.close() specifically, as long as you make a call to Connection.close(),

which will take care of releasing these resources.

Chapter 3. Performing Database Operations 3-3

Executing Across Threads

The same Statement or ResultSet instance cannot be accessed concurrently

across threads. You can, however, share a Connection object between multiple

threads.

For example, if one thread executes the Statement.executeQuery() method on

a Statement object, and another thread executes the

Statement.executeUpdate() method on the same Statement object, the results

of both methods are unexpected and depend on which method was executed

last.

Similarly, if one thread executes the method ResultSet.next() and another

thread executes the same method on the same ResultSet object, the results of

both methods are unexpected and depend on which method was executed

last.

Using Scroll Cursors

The scroll cursors feature of IBM Informix JDBC Driver follows the Sun

Microsystems JDBC 3.0 specification, with these exceptions:

v Scroll sensitivity

v Client-side scrolling

v Result set updatability

Scroll Sensitivity

The Informix database server implementation of scroll cursors places the rows

fetched in a temporary table. If another process changes a row in the original

table (assuming the row is not locked) and the row is fetched again, the

changes are not visible to the client.

This behavior is similar to the SCROLL_INSENSITIVE description in the JDBC

3.0 specification. IBM Informix JDBC Driver does not support

SCROLL_SENSITIVE cursors. To see updated rows, your client application

must close and reopen the cursor.

Client-Side Scrolling

The JDBC specification implies that the scrolling can happen on the client-side

result set. IBM Informix JDBC Driver supports the scrolling of the result set

only to the extent that the database server supports scrolling.

Result Set Updatability

The JDBC 3.0 API from Sun Microsystems does not provide exact

specifications for SQL queries that yield updatable result sets. Generally,

queries that meet the following criteria can produce updatable result sets:

v The query references only a single table in the database.

v The query does not contain any JOIN operations.

3-4 IBM Informix JDBC Driver Programmer’s Guide

v The query selects the primary key of the table it references.

v Every value expression in the select list must consist of a column

specification, and no column specification can appear more than once.

v The WHERE clause of the table expression cannot include a subquery.

IBM Informix JDBC Driver relaxes the primary key requirement, because the

driver performs the following operations:

1. The driver looks for a column called ROWID.

2. The driver looks for a SERIAL or SERIAL8 column in the table.

3. The driver looks for the table’s primary key in the system catalogs.

If none of these is provided, the driver returns an error.

When you delete a row in a result set, the ResultSet.absolute() method is

affected, because the positions of the rows change after the delete.

When the query contains a SERIAL column and the data is duplicated in

more than one row, execution of updateRow() or deleteRow() affects all the

rows containing that data.

The ScrollCursor.java example file shows how to retrieve a result set with a

scroll cursor. For examples of how to use an updatable scrollable cursor, see

the UpdateCursor1.java, UpdateCursor2.java, and UpdateCursor3.java files.

Using Hold Cursors

When transaction logging is used, IBM Informix Dynamic Server generally

closes all cursors and releases all locks when a transaction ends. In a

multiuser environment, this behavior is not always desirable.

IBM Informix JDBC Driver had already implemented holdable cursor support

by means of Informix extensions. Informix database servers (5.x, 7.x, SE, 8.x,

9.x, and 10.x) support adding keywords WITH HOLD in the declaration of

the cursor. Such a cursor is referred to as a hold cursor and is not closed at

the end of a transaction.

IBM Informix JDBC Driver, in compliance with the JDBC 3.0 specifications,

adds methods to JDBC interfaces to support holdable cursors.

For more information about hold cursors, see the IBM Informix: Guide to SQL

Syntax.

Updating the Database

You can issue batch update statements or perform bulk inserts to update the

database.

Chapter 3. Performing Database Operations 3-5

Performing Batch Updates

The batch update feature is similar to multiple Informix SQL PREPARE

statements. You can issue batch update statements as in the following

example:

PREPARE stmt FROM "insert into tab values (1);

 insert into tab values (2);

 update table tab set col = 3 where col = 2";

The batch update feature in IBM Informix JDBC Driver follows the Sun

Microsystems JDBC 3.0 specification, with these exceptions:

v SQL statements

v Return value from Statement.executeBatch()

The following sections give details.

SQL Statements and Batch Updates

The following commands cannot be put into multistatement PREPARE

statements:

v SELECT (except SELECT INTO TEMP) statement

v DATABASE statements

v CONNECTION statements

For more details, refer to IBM Informix: Guide to SQL Syntax.

Return Value from Statement.executeBatch() Method

The return value differs from the Sun Microsystems JDBC 3.0 specification in

the following ways:

v If the IFX_BATCHUPDATE_PER_SPEC environment variable is set to 0,

only the update count of the first statement executed in the batch is

returned. If the IFX_BATCHUPDATE_PER_SPEC environment variable is

set to 1 (the default), the return value equals the number of rows affected

by all SQL statements executed by Statement.executeBatch(). For more

information, see “Using Informix Environment Variables” on page 2-13.

v When errors occur in a batch update executed in a Statement object, no

rows are affected by the statement; the statement is not executed. Calling

BatchUpdateException.getUpdateCounts() returns 0 in this case.

v When errors occur in a batch update executed in a PreparedStatement

object, rows that were successfully inserted or updated on the database

server do not revert to their pre-updated state. However, the statements are

not always committed; they are still subject to the underlying autocommit

mode.

The BatchUpdate.java example file shows how to send batch updates to the

database server.

3-6 IBM Informix JDBC Driver Programmer’s Guide

Performing Bulk Inserts

A bulk insert is an Informix extension to the Sun Microsystems JDBC 3.0

batch update feature. The bulk insert feature improves the performance of

single INSERT statements that are executed multiple times, with multiple

value settings. To enable this feature, set the IFX_USEPUT environment

variable to 1. (The default value is 0.)

This feature does not work for multiple statements passed in the same

PreparedStatement instance or for statements other than INSERT. If this

feature is enabled and you pass in an INSERT statement followed by a

statement with no parameters, the statement with no parameters is ignored.

The bulk insert feature requires the client to convert the Java type to match

the target column type on the server for all data types except opaque types or

complex types.

The BulkInsert.java example, which is installed in the demo directory where

your JDBC driver is installed, shows how to perform a bulk insert.

Parameters, Escape Syntax, and Unsupported Methods

This section describes the following:

v How to use OUT parameters

v Support for the DESCRIBE INPUT statement

v How to use escape syntax to translate from JDBC to Informix

It also lists unsupported methods and methods that behave differently from

the standard.

Using CallableStatement OUT Parameters

CallableStatement methods handle OUT parameters in C function and Java

user-defined routines (UDRs). Two registerOutParameter() methods specify

the data type of OUT parameters to the driver. A series of getXXX() methods

retrieves OUT parameters.

IBM Informix Dynamic Server, Version 9.2x and 9.3x, considers OUT

parameters to be statement local variables (SLVs). SLVs are valid only for the

life of a single statement and cannot be returned directly upon executing the

routine. The JDBC CallableStatement interface provides a method for

retrieving OUT parameters.

With IBM Informix Dynamic Server, Version 10.0 and later, the OUT

parameter routine makes available a valid blob descriptor and data to the

JDBC client for a BINARY OUT parameter. Using receive methods in IBM

Chapter 3. Performing Database Operations 3-7

Informix JDBC Driver, Version 3.0 and later, supporting IDS 10.0 and later,

you can use these OUT parameter descriptors and data provided by the

server.

Exchange of descriptor and data between IDS and JDBC is consistent with the

existing mechanism by which data is exchanged for the result set methods of

JDBC, such as passing the blob descriptor and data through SQLI protocol

methods. (SPL UDRs are the only type of UDRs supporting BINARY OUT

parameters.)

For background information, refer to the following documentation:

v IBM Informix: User-Defined Routines and Data Types Developer's Guide

provides introductory and background information about opaque types and

user-defined routines (UDRs) for use in an Informix database.

v IBM Informix: J/Foundation Developer's Guide describes how to write Java

UDRs for use in the database server.

v The IBM Informix: Guide to SQL Tutorial describes how to write stored

procedure language (SPL) routines.

v The IBM Informix: DataBlade API Programmer's Guide describes how to write

external C routines.

Only Informix database servers versions 9.2 and later return an OUT

parameter to IBM Informix JDBC Driver. IBM Informix Dynamic Server,

Version 9.4 and later supports multiple OUT parameters.

For examples of how to use OUT parameters, see the CallOut1.java,

CallOut2.java, CallOut3.java, and CallOut4.java example programs in the

basic subdirectory of the demo directory where your IBM Informix JDBC

Driver is installed.

Server and Driver Restrictions and Limitations

Server Restrictions: This section describes the restrictions imposed by

different versions of the 9.x and later Dynamic Server. It also describes

enhancements made to the JDBC Driver and the restrictions imposed by it.

 Versions 9.2x and 9.3x of IBM Informix Dynamic Server have the following

requirements and limitations concerning OUT parameters:

v Only a function can have an OUT parameter. A function is defined as a

UDR that returns a value. A procedure is defined as a UDR that does not

return a value.

v There can be only one OUT parameter per function.

v The OUT parameter has to be the last parameter.

v You cannot specify INOUT parameters.

3-8 IBM Informix JDBC Driver Programmer’s Guide

IBM Informix Dynamic Server, Version 10.0, allows you to specify INOUT

parameters (C, SPL, or Java UDRs).

v The server does not correctly return the value NULL for external functions.

v You cannot specify OUT parameters that are complex types.

v You cannot specify C and SPL routines that use the RETURN WITH

RESUME syntax.

These restrictions, for server versions 9.2x and 9.3x, are imposed whether

users create C, SPL, or Java UDRs.

The functionality of the IBM Informix Dynamic Server, Version 9.4 allows:

v Any and all parameters to be OUT parameters for C, SPL, or Java UDRs

v User-defined procedures with no return value to have OUT parameters

v Multiple OUT parameters

You cannot specify INOUT parameters.

For more information on UDRs, see IBM Informix: User-Defined Routines and

Data Types Developer's Guide and IBM Informix: J/Foundation Developer's Guide.

Driver Enhancement: The CallableStatement object provides a way to call

or execute UDRs in a standard way for all database servers. Results from the

execution of these UDRs are returned as a result set or as an OUT parameter.

The following is a program that creates a user-defined function, myudr, with

two OUT parameters and one IN parameter, and then executes the myudr()

function. The example requires server-side support for multiple OUT

parameters; hence it will only work for IBM Informix Dynamic Server,

Version 9.4 or above. For more information on UDRs, see IBM Informix:

User-Defined Routines and Data Types Developer's Guide and IBM Informix:

J/Foundation Developer's Guide.

import java.sql.*;

public class myudr {

 public myudr() {

 }

 public static void main(String args[]) {

 Connection myConn = null;

 try {

 Class.forName("com.informix.jdbc.IfxDriver");

 myConn = DriverManager.getConnection(

 "jdbc:informix-sqli:MYSYSTEM:18551/testDB:"

 +"INFORMIXSERVER=patriot1;user=USERID;"

 +"password=MYPASSWORD");

 }

 catch (ClassNotFoundException e) {

Chapter 3. Performing Database Operations 3-9

System.out.println(

 "problem with loading Ifx Driver\n" + e.getMessage());

 }

 catch (SQLException e) {

 System.out.println(

 "problem with connecting to db\n" + e.getMessage());

 }

 try {

 Statement stmt = myConn.createStatement();

 stmt.execute("DROP FUNCTION myudr");

 }

 catch (SQLException e){

 }

 try

 {

 Statement stmt = myConn.createStatement();

 stmt.execute(

 "CREATE FUNCTION myudr(OUT arg1 int, arg2 int, OUT arg3 int)"

 +" RETURNS boolean; LET arg1 = arg2; LET arg3 = arg2 * 2;"

 +"RETURN ’t’; END FUNCTION;");

 }

 catch (SQLException e) {

 System.out.println(

 "problem with creating function\n" + e.getMessage());

 }

 Connection conn = myConn;

 try

 {

 String command = "{? = call myudr(?, ?, ?)}";

 CallableStatement cstmt = conn.prepareCall (command);

 // Register arg1 OUT parameter

 cstmt.registerOutParameter(1, Types.INTEGER);

 // Pass in value for IN parameter

 cstmt.setInt(2, 4);

 // Register arg3 OUT parameter

 cstmt.registerOutParameter(3, Types.INTEGER);

 // Execute myudr

 ResultSet rs = cstmt.executeQuery();

 // executeQuery returns values via a resultSet

 while (rs.next())

 {

 // get value returned by myudr

 boolean b = rs.getBoolean(1);

 System.out.println("return value from myudr = " + b);

 }

 // Retrieve OUT parameters from myudr

3-10 IBM Informix JDBC Driver Programmer’s Guide

int i = cstmt.getInt(1);

 System.out.println("arg1 OUT parameter value = " + i);

 int k = cstmt.getInt(3);

 System.out.println("arg3 OUT parameter value = " + k);

 rs.close();

 cstmt.close();

 conn.close();

 }

 catch (SQLException e)

 {

 System.out.println("SQLException: " + e.getMessage());

 System.out.println("ErrorCode: " + e.getErrorCode());

 e.printStackTrace();

 }

 }

}

- - -

.../j2sdk1.4.0/bin/java ... myudr

return value from myudr = true

arg1 OUT parameter value = 4

arg3 OUT parameter value = 8

Driver Restrictions and Limitations: IBM Informix JDBC Driver has the

following requirements and limitations concerning OUT parameters:

v With IBM Informix Dynamic Server, Version 9.2, the driver always returns

a -9752 error if a function contains an OUT parameter. The driver creates an

SQLWarning object and chains this to the CallableStatement object.

You can determine if a function contains an OUT parameter by calling the

CallableStatement.getWarnings() method or by calling the

IfmxCallableStatement.hasOutParameter() method, which return TRUE if

the function has an OUT parameter.

If a function contains an OUT parameter, you must use the

CallableStatement.registerOutParameter() method to register the OUT

parameter, the setXXX() methods to register the IN and OUT parameter

values, and the getXXX() method to retrieve the OUT parameter value.

v The CallableStatement.getMetaData() method returns NULL until the

executeQuery() method has been executed. After executeQuery() has been

called, the ResultSetMetaData object contains information only for the

return value, not the OUT parameter.

v You must specify all IN parameters using setXXX() methods. You cannot

use literals in the SQL statement. For example, the following statement

produces unreliable results:

CallableStatement cstmt = myConn.prepareCall("{call

 myFunction(25, ?)}");

Instead, use a statement that does not specify literal parameters:

Chapter 3. Performing Database Operations 3-11

CallableStatement cstmt = myConn.prepareCall("{call

 myFunction(?, ?)}");

Call the setXXX() methods for both parameters.

v Do not close the ResultSet returned by the

CallableStatement.executeQuery() method until you have retrieved the

OUT parameter value using a getXXX() method.

v You cannot cast the OUT parameter to a different type in the SQL

statement. For example, the following cast is ignored:

CallableStatement cstmt = myConn.prepareCall("{call

 foo(?::lvarchar, ?)}";

v The setNull() and registerOutParameter() methods both take java.sql.Types

values as parameters. There are some one-to-many mappings from

java.sql.Types values to Informix types.

In addition, some Informix types do not map to java.sql.Types values.

Extensions for setNull() and registerOutParameter() fix these problems. See

“IN and OUT Parameter Type Mapping” next.

These restrictions apply to a JDBC application that handles C, SPL, or Java

UDRs.

IN and OUT Parameter Type Mapping: An exception is thrown by the

registerOutParameter(int, int), registerOutParameter(int, int, int), or

setNull(int, int) method if the driver cannot find a matching Informix type or

finds a mapping ambiguity (more than one matching Informix type). The table

that follows shows the mappings the CallableStatement interface uses.

Asterisks (*) indicate mapping ambiguities.

java.sql.Types com.informix.lang.IfxTypes

Array* IFX_TYPE_LIST

 IFX_TYPE_MULTISET

 IFX_TYPE_SET

Bigint IFX_TYPE_INT8

Binary IFX_TYPE_BYTE

Bit Not supported

Blob IFX_TYPE_BLOB

Char IFX_TYPE_CHAR (n)

Clob IFX_TYPE_CLOB

Date IFX_TYPE_DATE

Decimal IFX_TYPE_DECIMAL

Distinct* Depends on base type

3-12 IBM Informix JDBC Driver Programmer’s Guide

Double IFX_TYPE_FLOAT

Float IFX_TYPE_FLOAT1

Integer IFX_TYPE_INT

Java_Object* IFX_TYPE_UDTVAR

 IFX_TYPE_UDTFIX

Longvarbinary* IFX_TYPE_BYTE

 IFX_TYPE_BLOB

Longvarchar* IFX_TYPE_TEXT

 IFX_TYPE_CLOB

 IFX_TYPE_LVARCHAR

Null Not supported

Numeric IFX_TYPE_DECMIAL

Other Not supported

Real IFX_TYPE_SMFLOAT

Ref Not supported

Smallint IFX_TYPE_SMINT

Struct IFX_TYPE_ROW

Time IFX_TYPE_DTIME (hour to second)

Timestamp IFX_TYPE_DTIME (year to fraction(5))

Tinyint IFX_TYPE_SMINT

Varbinary IFX_TYPE_BYTE

Varchar IFX_TYPE_VCHAR (n)

Nothing* IFX_TYPE_BOOL

1 This mapping is JDBC compliant. You can map the JDBC FLOAT data type

to the Informix SMALLFLOAT data type for backward compatibility by

setting the IFX_SET_FLOAT_AS_SMFLOAT connection property to 1.

To avoid mapping ambiguities, use the following extensions to

CallableStatement, defined in the IfmxCallableStatement interface:

public void IfxRegisterOutParameter(int parameterIndex,

 int ifxType) throws SQLException;

public void IfxRegisterOutParameter(int parameterIndex,

 int ifxType, String name) throws SQLException;

Chapter 3. Performing Database Operations 3-13

public void IfxRegisterOutParameter(int parameterIndex,

 int ifxType, int scale) throws SQLException;

public void IfxSetNull(int i, int ifxType) throws SQLException;

public void IfxSetNull(int i, int ifxType, String name) throws

 SQLException;

Possible values for the ifxType parameter are listed in “Using the IfxTypes

Class” on page C-10.

IBM Informix Dynamic Server, Version 10.0, makes available to the JDBC

client valid BLOB descriptors and data to support binary OUT parameters for

SPL UDRs.

IBM Informix JDBC Driver, Version 3.0, can receive the OUT parameter

descriptor and data provided by the server and use it in Java applications.

Note: The single correct return value for any JDBC binary type (BINARY,

VARBINARY, LONGVARBINARY) retrieved via method

getParameterType (ParameterMetaData) is -4, which is associated with

java.sql.Type.LONGVARBINARY data type. This reflects the fact that

all the JDBC binary types are mapped to the same Informix SQL data

type, BYTE.

JDBC Support for DESCRIBE INPUT

The SQL 92 and 99 standards specify a DESCRIBE INPUT statement for

Dynamic SQL. Version 9.4 of IBM Informix Dynamic Server provides support

for this statement. (For more information on SQL standards, syntax, and this

statement, see IBM Informix: Guide to SQL Syntax.)

The JDBC 3.0 specification introduces a ParameterMetaData class and

methods that correspond to DESCRIBE INPUT support.

The IBM Informix JDBC Driver implements the java.sql.ParameterMetaData

class. This interface is used for describing input parameters in prepared

statements. The method getParameterMetaData() has been implemented to

retrieve the metadata for a particular statement.

The ParameterMetaData class and the getParameterMetaData() method are

part of the JDBC 3.0 API and are included as interfaces in J2SDK1.4.0. Details

of these interfaces are specified in the JDBC 3.0 specification.

The IBM Informix JDBC Driver has implemented additional methods to the

ParameterMetaData interface to extend its functionality, as shown in the

following table.

3-14 IBM Informix JDBC Driver Programmer’s Guide

Return Type Method Description

int getParameterLength (int param) Retrieves parameter’s length

int getParameterExtendedId (int param) Retrieves parameter’s extended id

java.lang.String getParameterExtendedName (int param) Retrieves parameter’s extended

name

java.lang.String getParameterExtendedOwnerName (int param) Retrieves parameter’s extended

type’s owner name

int getParameterSourceType (int param) Retrieves parameter’s SourceType

int getParameterAlignment (int param) Retrieves parameter’s alignment

Below is an example of using the ParameterMetaData interface in the

IBM Informix JDBC Driver:

. . .

try

{

 PreparedStatement pstmt = null;

 pstmt = myConn.prepareStatement(

 "select * from table_1 where int_col = ? "

 +"and string_col = ?");

 ParameterMetaData paramMeta = pstmt.getParameterMetaData();

 int count = paramMeta.getParameterCount();

 System.out.println("Count : "+count);

 for (int i=1; i <= count; i++)

 {

 System.out.println("Parameter type name : "

 +paramMeta.getParameterTypeName(i));

 System.out.println("Parameter type : "

 +paramMeta.getParameterType(i));

 System.out.println("Parameter class name : "

 +paramMeta.getParameterClassName(i));

 System.out.println("Parameter mode : "

 +paramMeta.getParameterMode(i));

 System.out.println("Parameter precision : "

 +paramMeta.getPrecision(i));

 System.out.println("Parameter scale : "

 +paramMeta.getScale(i));

 System.out.println("Parameter nullable : "

 +paramMeta.isNullable(i));

 System.out.println("Parameter signed : "

 +paramMeta.isSigned(i));

 }

. . .

Chapter 3. Performing Database Operations 3-15

Using Escape Syntax

Escape syntax indicates information that must be translated from JDBC format

to Informix native format. Valid escape syntax for SQL statements is as

follows.

Type of Statement Escape Syntax

Procedure {call procedure}

Function {var = call function}

Date {d ’yyyy-mm-dd’}

Time {t ’hh:mm:ss’}

Timestamp (Datetime) {ts ’yyyy-mm-dd hh:mm:ss[.fffff]’}

Function call {fn func[(args)]}

Escape character {escape ’escape-char’}

Outer join {oj outer-join-statement}

 You can put any of this syntax in an SQL statement, as follows:

executeUpdate("insert into tab1 values({d ’1999-01-01’})");

Everything inside the brackets is converted into a valid Informix SQL

statement and returned to the calling function.

Unsupported Methods and Methods that Behave Differently

The following JDBC API methods are not supported by IBM Informix JDBC

Driver and cannot be used in a Java program that connects to an Informix

database:

v CallableStatement.getRef(int)

v Connection.setCatalog()

v Connection.setReadOnly()

v PreparedStatement.addBatch(String)

v PreparedStatement.setRef(int, Ref)

v PreparedStatement.setUnicodeStream(int, java.io.InputStream, int)

v ResultSet.getRef(int)

v ResultSet.getRef(String)

v ResultSet.getUnicodeStream(int)

v ResultSet.getUnicodeStream(String)

v ResultSet.refreshRow()

v ResultSet.rowDeleted()

v ResultSet.rowInserted()

v ResultSet.rowUpdated()

3-16 IBM Informix JDBC Driver Programmer’s Guide

v ResultSet.setFetchSize()

v Statement.cancel()

v Statement.setMaxFieldSize()

v Statement.setQueryTimeout()

The Connection.setCatalog() and Connection.setReadOnly() methods return

with no error. The other methods, above, throw the exception: Method not

Supported.

The following JDBC API methods behave other than specified by the JavaSoft

specification:

v CallableStatement.execute()

Returns a single result set

v DatabaseMetaData.getProcedureColumns()

Ignores the columnNamePattern field; returns NULL when used with any

server version older than 9.x

v DatabaseMetaData.othersUpdatesAreVisible()

Always returns FALSE

v DatabaseMetaData.othersDeletesAreVisible()

Always returns FALSE

v DatabaseMetaData.othersInsertsAreVisible()

Always returns FALSE

v DatabaseMetaData.ownUpdatesAreVisible()

Always returns FALSE

v DatabaseMetaData.ownDeletesAreVisible()

Always returns FALSE

v DatabaseMetaData.ownInsertsAreVisible()

Always returns FALSE

v DatabaseMetaData.deletesAreDetected()

Always returns FALSE

v DatabaseMetaData.updatesAreDetected()

Always returns FALSE

v DatabaseMetaData.insertsAreDetected()

Always returns FALSE

v PreparedStatement.execute()

Returns a single result set

v ResultSet.getFetchSize()

Always returns 0

Chapter 3. Performing Database Operations 3-17

v ResultSetMetaData.getCatalogName()

Always returns a String object containing one blank space

v ResultSetMetaData.getTableName()

Returns the table name for SELECT, INSERT, and UPDATE statements

SELECT statements with more than one table name and all other statements

return a String object containing one blank space.

v ResultSetMetaData.getSchemaName()

Always returns a String object containing one blank space

v ResultSetMetaData.isDefinitelyWriteable()

Always returns TRUE

v ResultSetMetaData.isReadOnly()

Always returns FALSE

v ResultSetMetaData.isWriteable()

Always returns TRUE

v Statement.execute()

Returns a single result set

v Connection.isReadOnly()

Returns TRUE only when connecting to a secondary server in HDR scenario

(see Important note below)

Important: IBM Informix servers do not currently support read-only

connections. For the IBM Informix JDBC Driver, Version 2.21.JC4,

the implementation of the setReadOnly() method from the

java.sql.Connection interface has been changed to accept the value

passed to it by the calling process. The setReadOnly() method

simply returns to the calling process without any interaction to the

Informix database server. (Previous versions of the JDBC driver

threw an unsupported method exception.) This change has been

made to synchronize the functionality present in the IBM Informix

JDBC Driver to the IBM DB2 JDBC driver and also to achieve a

higher level of compliance in the Sun Conformance Test (CTS).

Handling Transactions

By default, all new Connection objects are in autocommit mode. When

autocommit mode is on, a COMMIT statement is automatically executed after

each statement that is sent to the database server. To turn autocommit mode

off, explicitly call Connection.setAutoCommit(false).

When autocommit mode is off, IBM Informix JDBC Driver implicitly starts a

new transaction when the next statement is sent to the database server. This

transaction lasts until the user issues a COMMIT or ROLLBACK statement. If

3-18 IBM Informix JDBC Driver Programmer’s Guide

the user has already started a transaction by executing setAutoCommit(false)

and then calls setAutoCommit(false) again, the existing transaction continues

unchanged. The Java program must explicitly terminate the transaction by

issuing either a COMMIT or a ROLLBACK statement before it drops the

connection to the database or the database server.

If the Java program sets autocommit mode on during a transaction,

IBM Informix JDBC Driver commits the current transaction if the JDK is

version 1.4 and later, otherwise the driver rolls back the current transaction

before turning on autocommit.

In a database that has been created with logging, if a COMMIT statement is

sent to the database server and autocommit mode is on, the error -255: Not

in transaction is returned by the database server because there is currently

no user transaction started. This occurs whether the COMMIT statement was

sent with the Connection.commit() method or directly with an SQL statement.

In a database created in ANSI mode, explicitly sending a COMMIT statement

to the database server commits an empty transaction. No error is returned

because the database server automatically starts a transaction before it

executes the statement if there is no user transaction currently open.

For an XAConnection object, autocommit mode is off by default and must

remain off while a distributed transaction is occurring. The transaction

manager performs commit and rollback operations; therefore, you should

avoid performing these operations directly.

Handling Errors

Use the JDBC API SQLException class to handle errors in your Java program.

The Informix-specific com.informix.jdbc.Message class can also be used

outside a Java program to retrieve the Informix error text for a given error

number.

Handling Errors With the SQLException Class

Whenever an error occurs from either IBM Informix JDBC Driver or the

database server, an SQLException is raised. Use the following methods of the

SQLException class to retrieve the text of the error message, the error code,

and the SQLSTATE value:

v getMessage()

Returns a description of the error

SQLException inherits this method from the java.util.Throwable class.

v getErrorCode()

Returns an integer value that corresponds to the Informix database server

or IBM Informix JDBC Driver error code

Chapter 3. Performing Database Operations 3-19

v getSQLState()

Returns a string that describes the SQLSTATE value

The string follows the X/Open SQLSTATE conventions.

All IBM Informix JDBC Driver errors have error codes of the form -79XXX,

such as -79708 Method can’t take null parameter.

For a list of Informix database server errors, refer to IBM Informix: Error

Messages. You can find the online version of this guide at

http://www.ibm.com/software/data/informix/pubs/library/. For a list of

IBM Informix JDBC Driver errors, see Error Messages near the end of this

book.

The following example from the SimpleSelect.java program shows how to

use the SQLException class to catch IBM Informix JDBC Driver or database

server errors using a try-catch block:

try

 {

 PreparedStatement pstmt = conn.prepareStatement("Select *

 from x "

 + "where a = ?;");

 pstmt.setInt(1, 11);

 ResultSet r = pstmt.executeQuery();

 while(r.next())

 {

 short i = r.getShort(1);

 System.out.println("Select: column a = " + i);

 }

 r.close();

 pstmt.close();

 }

catch (SQLException e)

 {

 System.out.println("ERROR: Fetch statement failed: " +

 e.getMessage());

 }

Retrieving the Syntax Error Offset

To determine the exact location of a syntax error, use the

getSQLStatementOffset() method to return the syntax error offset.

The following example shows how to retrieve the syntax error offset from an

SQL statement (which is 10 in this example):

try {

 Statement stmt = conn.createStatement();

 String command = "select * fom tt";

 stmt.execute(command);

}

catch(Exception e)

3-20 IBM Informix JDBC Driver Programmer’s Guide

{

 System.out.println ("Error Offset :"+((IfmxConnection conn).getSQLStatementOffset());

 System.out.println(e.getMessage());

}

Catching RSAM Error Messages

RSAM messages are attached to SQLCODE messages. For example, if an

SQLCODE message says that a table cannot be created, the RSAM message

states the reason, which might be insufficient disk space.

You can use the SQLException.getNextException() method to catch RSAM

error messages. For an example of how to catch these messages, see the

ErrorHandling.java program, which is included in IBM Informix JDBC

Driver.

Handling Errors with the com.informix.jdbc.Message Class

Informix provides the class com.informix.jdbc.Message for retrieving

Informix error message text based on the Informix error number. To use this

class, call the Java interpreter java directly, passing it an Informix error

number, as shown in the following example:

java com.informix.jdbc.Message 100

The example returns the message text for Informix error 100:

100: ISAM error: duplicate value for a record with unique key.

A positive error number is returned if you specify an unsigned number when

using the com.informix.jdbc.Message class. This differs from the finderr

utility, which returns a negative error number for an unsigned number.

Accessing Database Metadata

To access information about an Informix database, use the JDBC API

DatabaseMetaData interface.

IBM Informix JDBC Driver implements all the JDBC 3.0 specifications for

DatabaseMetaData methods.

The following new methods in DatabaseMetaData have been added in

IBM Informix JDBC Driver 2.21.JC5 and later for JDBC 3.0 compliance:

v getSuperTypes()

v getSuperTables()

v getAttributes()

v getResultSetHoldability()

v getDatabaseMajorVersion()

v getDatabaseMinorVersion()

Chapter 3. Performing Database Operations 3-21

v getJDBCMajorVersion()

v getJDBCMinorVersion()

v getSQLStateType()

v locatorsUpdateCopy()

v supportsGetGeneratedKeys()

v supportsMultipleOpenResults()

v supportsNamedParameters()

v supportsGetGeneratedKeys()

v supportsMultipleOpenResults()

Starting with Dynamic Server 10.0 and IBM Informix JDBC Driver 3.0, which

is fully JDBC 3.0 specification compliant, new methods have been

implemented to retrieve server-generated keys. Retrieving autogenerated keys

involves the following actions:

1. The JDBC application programmer provides an SQL statement to be

executed.

2. The server executes the SQL statement and an indication that

autogenerated keys can be retrieved is returned.

3. Before the server executes the SQL statement, columnNames or

columnIndexes (if provided) are validated. An SQLException will be

thrown if they are invalid.

4. If requested, the JDBC driver and server returns a resultSet object. If no

keys were generated, the resultSet is empty, containing no rows or

columns.

5. The user can request metadata for the resultSet object, and the JDBC

driver and server will return a resultSetMetaData Object.

For more information on retrieving autogenerated keys, see the JDBC 3.0

Specification, Section 13.6, “Retrieving Auto Generated Keys.”

IBM Informix JDBC Driver uses the sysmaster database to get database

metadata. If you want to use the DatabaseMetaData interface in your Java

program, the sysmaster database must exist in the Informix database server to

which your Java program is connected. For example, IBM Informix SE does

not have a sysmaster database, therefore you cannot use the

DatabaseMetaData interface with it.

IBM Informix JDBC Driver interprets the JDBC API term schemas to mean the

names of Informix users who own tables. The

DatabaseMetaData.getSchemas() method returns all the users found in the

owner column of the systables system catalog.

3-22 IBM Informix JDBC Driver Programmer’s Guide

Similarly, IBM Informix JDBC Driver interprets the JDBC API term catalogs to

mean the names of Informix databases. The DatabaseMetaData.getCatalogs()

method returns the names of all the databases that currently exist in the

Informix database server to which your Java program is connected.

The example DBMetaData.java shows how to use the DatabaseMetaData and

ResultSetMetaData interfaces to gather information about a new procedure.

Refer to Appendix A for more information about this example.

Other Informix Extensions to the JDBC API

This section describes the Informix-specific extensions to the JDBC API not

already discussed in this guide. These extensions handle information that is

specific to Informix databases.

Another Informix extension, the com.informix.jdbc.Message class, is fully

described in “Handling Errors” on page 3-19.

Using the Auto Free Feature

If you enable the Informix Auto Free feature, the database server

automatically frees the cursor when it closes the cursor. Therefore, your

application does not have to send two separate requests to close and then free

the cursor—closing the cursor is sufficient.

You can enable the Auto Free feature by setting the IFX_autofree variable to

TRUE in the database URL, as in this example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;

 user=rdtest;password=test;ifx_autofree=true;

You can also use one of the following methods:

public void setAutoFree (boolean flag)

public boolean getAutoFree()

The setAutoFree() method should be called before the executeQuery()

method, but the getAutoFree() method can be called before or after the

executeQuery() method.

To use these methods, your applications must import classes from the

Informix package com.informix.jdbc and cast the Statement class to the

IfmxStatement class, as shown here:

import com.informix.jdbc.*;

...

(IfmxStatement)stmt.setAutoFree(true);

The Auto Free feature is available for the following database server versions:

v Version 7.23 and later

Chapter 3. Performing Database Operations 3-23

v Version 9.0 and later

Obtaining Driver Version Information

There are two ways to obtain version information about IBM Informix JDBC

Driver: from your Java program or from the UNIX or MS-DOS command

prompt.

 To get version information from your Java program:

1. Import the Informix package com.informix.jdbc.* into your Java program

by adding the following line to the import section:

import com.informix.jdbc.*;

2. Invoke the static method IfxDriver.getJDBCVersion(). This method

returns a String object that contains the complete version of the current

IBM Informix JDBC Driver.

An example of a version of IBM Informix JDBC Driver is 2.00.JC1.

The IfxDriver.getJDBCVersion() method returns only the version, not the

serial number you provided during installation of the driver.

Important: For version X.Y of IBM Informix JDBC Driver, the JDBC API

methods Driver.getMajorVersion() and

DatabaseMetaData.getDriverMajorVersion() always return the

value X. Similarly, the methods Driver.getMinorVersion() and

DatabaseMetaData.getDriverMinorVersion() always return the

value Y.

 To get the version of IBM Informix JDBC Driver from the command line,

enter the following command at the UNIX shell prompt or the Windows

command prompt:

java com.informix.jdbc.Version

The command also returns the serial number you provided when you

installed the driver.

Storing and Retrieving XML Documents

Extensible Markup Language (XML), as defined by the World Wide Web

Consortium (W3C) provides rules, guidelines, and conventions for describing

structured data in a plain text, editable file (called an XML document). XML

uses tags only to delimit pieces of data, leaving the interpretation of the data

to the application that uses it. XML is an increasingly popular method of

representing data in an open, platform-independent format.

The currently available API for accessing XML documents is called JAXP (Java

API for XML Parsing). The API has the following two subsets:

3-24 IBM Informix JDBC Driver Programmer’s Guide

v SAX (Simple API for XML) is an event-driven protocol, with the

programmer providing the callback methods that the XML parser invokes

when it analyzes a document.

v DOM (Document Object Model) is a random-access protocol, which

converts an XML document into a collection of objects in memory that can

be manipulated at the programmer’s discretion. DOM objects have the data

type Document.

JAXP also contains a plugability layer that standardizes programmatic access to

SAX and DOM by providing standard factory methods for creating and

configuring SAX parsers and creating DOM objects.

Informix extensions to the JDBC API facilitate storage and retrieval of XML

data in database columns. The methods used during data storage assist in

parsing the XML data, verify that well-formed and valid XML data is stored,

and ensure that invalid XML data is rejected. The methods used during data

retrieval assist in converting the XML data to DOM objects and to type

InputSource, which is the standard input type to both SAX and DOM

methods. The Informix extensions are designed to support XML programmers

while still providing flexibility regarding which JAXP package the

programmer is using.

Setting Up Your Environment to Use XML Methods

This section contains information you need to know to prepare your system to

use the JDBC driver XML methods.

Setting Your CLASSPATH

To use the XML methods, add the pathnames of the following files to your

CLASSPATH setting:

v ifxtools.jar

v xerces.jar

All of these files are located in the lib directory where you installed your

driver.

Note: The Xerces XML library xerces.jar has been removed from distribution

with the IBM Informix JDBC Driver, Version 3.00. Xerces is an open

source library that is freely available for download at

http://www.alphaworks.ibm.com/tech/xml4j.

The XML methods are not part of the ifxjdbc.jar file. Instead, they are

released in a separate .jar file named ifxtools.jar. To use the methods, you

must add this file to your CLASSPATH setting along with ifxjdbc.jar.

Chapter 3. Performing Database Operations 3-25

In addition, building ifxtools.jar requires using code from a .jar file that

supports the SAX, DOM, and JAXP methods. To use ifxtools.jar, you must

add these .jar files to your CLASSPATH setting.

JDK version 1.4 or later uses the Sun Microsystems default XML parser even

if the xml4j parser is in the CLASSPATH. To use the xml4j implementation of

the SAX parser, set the following system properties in the application code or

use the -D command line option:

v The property javax.xml.parsers.SAXParserFactory must be set to

org.apache.xerces.jaxp.SAXParserFactoryImpl.

v For the Document Object Model, the property

javax.xml.parsers.DocumentBuilderFactory must be set to

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl.

For more info on how to set the properties see “Specifying a Parser Factory”

on page 3-26.

Specifying a Parser Factory

By default, the xml4j xerces parser (and as a result, ifxtools.jar) uses the

non-validating XML parser. To use an alternative SAX parser factory, run your

application from the command line as follows:

% java -Djavax.xml.parsers.SAXParserFactory=new-factory

If you are not running from the command line, the factory name must be

enclosed in double quotes:

% java -Djavax.xml.parsers.SAXParserFactory="new-factory"

You can also set a system property in your code:

System.setProperty("javax.xml.parsers.SAXParserFactory",

 "new-factory")

In this code, new-factory is the alternative parser factory. For example, if you

are using the xerces parser, then new-factory is replaced by

org.apache.xerces.jaxp.SAXParserFactoryImpl.

It is also possible to use an alternative document factory for DOM methods.

Run your application from the command line as follows:

% java -Djavax.xml.parsers.DocumentBuilderFactory=new-factory

If you are not running from the command line, the factory name must be

enclosed in double quotes:

% java -Djavax.xml.parsers.DocumentBuilderFactory="new-factory"

You can also set a system property in your code:

3-26 IBM Informix JDBC Driver Programmer’s Guide

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",

 "new-factory")

For example, if you are using the xerces parser, then new-factory is replaced by

jorg.apache.xerces.jaxp.DocumentBuilderFactoryImpl.

Inserting Data

You can use the methods in this section to insert XML data into a database

column.

The parameters in method declarations in this section have the following

meanings:

v The file parameter is an XML document. The document can be referenced

by a URL (such as http://server/file.xml or file:///path/file.xml) or a

pathname (such as /tmp/file.xml or c:\\work\\file.xml).

v The handler parameter is an optional class you supply, containing callback

routines that the SAX parser invokes as it is parsing the file. If no value is

specified, or if handler is set to NULL, the driver uses empty callback routines

that echo success or failure (the driver reports failure in the form of an

SQLException).

v The validating parameter tells the SAX parser factory to use a validating

parser instead of a parser that only checks form.

If you do not specify nsa or validating, the driver uses the xml4j

nonvalidating XML parser. To change the default, see the previous section,

“Specifying a Parser Factory” on page 3-26.

v The nsa parameter tells the SAX parser factory whether it should use a

parser that can handle namespaces.

The following methods parse a file using SAX and convert it to a string. You

can then use the string returned by these methods as input to the

PreparedStatement.setString() method to insert the data into a database

column.

public String XMLtoString(String file, String handler, boolean

 validating,boolean nsa) throws SQLException

public String XMLtoString(String file, String handler) throws

 SQLException

public String XMLtoString(String file) throws SQLException

The following methods parse a file using SAX and convert it to an object of

class InputStream. You can then use the InputStream object as input to the

PreparedStatement.setAsciiStream(), PreparedStatement.setBinaryStream(),

or PreparedStatement.setObject() methods to insert the data into a database

column.

Chapter 3. Performing Database Operations 3-27

public InputStream XMLtoInputStream(String file, String handler,

 boolean validating,boolean nsa) throws SQLException;

public InputStream XMLtoInputStream(String file, String handler)

 throws SQLException;

public InputStream XMLtoInputStream(String file) throws

 SQLException;

For examples of using these methods, see “Inserting Data Examples” on page

3-29.

If no value is specified, or if handler is set to NULL, the driver uses the default

Informix handler.

Important: The driver truncates any input data that is too large for a column.

For example, if you insert the x.xml file into a column of type

char (55) instead of a column of type char (255), the driver inserts

the truncated file with no errors (the driver throws an SQLWarn

exception, however). When the truncated row is selected, the

parser throws a SAXParseException because the row contains

invalid XML.

Retrieving Data

You can use the methods in this section to convert XML data that has been

fetched from a database column. These methods help you either convert

selected XML text to DOM or parse the data with SAX. The InputSource class

is the input type to JAXP parsing methods.

For information about the file, handler, nsa, and validating parameters, see

“Inserting Data” on page 3-27.

The following methods convert objects of type String or InputStream to

objects of type InputSource. You can use the ResultSet.getString(),

ResultSet.getAsciiStream(), or ResultSet.getBinaryInputStream() methods to

retrieve the data from the database column and then pass the retrieved data

to getInputSource() for use with any of the SAX or DOM parsing methods.

(For an example, see “Retrieving Data Examples” on page 3-30.)

public InputSource getInputSource(String s) throws SQLException;

public InputSource getInputSource(InputStream is) throws

 SQLException;

The following methods convert objects of type String or InputStream to

objects of type Document:

public Document StringtoDOM(String s, String handler, boolean

 validating,boolean nsa) throws SQLException

3-28 IBM Informix JDBC Driver Programmer’s Guide

public Document StringtoDOM(String s, String handler) throws

 SQLException

public Document StringtoDOM(String s) throws SQLException

public Document InputStreamtoDOM(String s, String handler, boolean

 validating,boolean nsa) throws SQLException

public Document InputStreamtoDOM(String file, String handler)

 throws SQLException

public Document InputStreamtoDOM(String file) throws SQLException

For examples of using these methods, see “Retrieving Data Examples” on

page 3-30.

Inserting Data Examples

The examples in this section illustrate converting XML documents to formats

acceptable for insertion into Informix database columns.

XMLtoString() Examples

The following example converts three XML documents to character strings

and then uses the strings as parameter values in an SQL INSERT statement:

PreparedStatement p = conn.prepareStatement("insert into tab

 values(?,?,?)");

p.setString(1, UtilXML.XMLtoString("/home/file1.xml"));

p.setString(2, UtilXML.XMLtoString("http://server/file2.xml");

p.setString(3, UtilXML.XMLtoString("file3.xml");

The following example inserts an XML file into an LVARCHAR column. In

this example, tab1 is a table created using the SQL statement:

create table tab1 (col1 lvarchar);

The code is:

try

 {

 String cmd = "insert into tab1 values (?)";

 PreparedStatement pstmt = conn.prepareStatement(cmd);

 pstmt.setString(1, UtilXML.XMLtoString("/tmp/x.xml"));

 pstmt.execute();

 pstmt.close();

 }

 catch (SQLException e)

 {

 // Error handling

 }

XMLtoInputStream() Example

The following example inserts an XML file into a text column. In this

example, table tab2 is created using the SQL statement:

create table tab2 (col1 text);

Chapter 3. Performing Database Operations 3-29

The code is:

try

 {

 String cmd = "insert into tab2 values (?)";

 PreparedStatement pstmt = conn.prepareStatement(cmd);

 pstmt.setAsciiStream(1, UtilXML.XMLtoInputStream("/tmp/x.xml"),

 (int)(new File("/tmp/x.xml").length()));

 pstmt.execute();

 pstmt.close();

 }

 catch (SQLException e)

 {

 // Error handling

 }

Retrieving Data Examples

The following examples illustrate retrieving data from Informix database

columns and converting the data to formats acceptable to XML parsers.

StringtoDOM() Example

This example operates under the assumption that xmlcol is a column of type

lvarchar that contains XML data. The data could be fetched and converted to

DOM with the following code:

ResultSet r = stmt.executeQuery("select xmlcol from table where

 ...");

while (r.next()

 {

 Document doc= UtilXML.StringtoDOM(r.getString("xmlcol"));

 // Process ‘doc’

 }

InputStreamtoDOM() Example

The following example fetches XML data from a text column into a DOM

object:

try

 {

 String sql = "select col1 from tab2";

 Statement stmt = conn.createStatement();

 ResultSet r = stmt.executeQuery(sql);

 while(r.next())

 {

 Document doc = UtilXML.InputStreamtoDOM(r.getAsciiStream(1));

 }

 r.close();

 }

 catch (Exception e)

 {

 // Error handling

 }

3-30 IBM Informix JDBC Driver Programmer’s Guide

getInputSource() Examples

This example retrieves the XML data stored in column xmlcol and converts it

to an object of type InputSource; the InputSource object i can then be used

with any SAX or DOM parsing methods:

InputSource i = UtilXML.getInputSource

 (resultset.getString("xmlcol"));

This example uses the implementation of Sun’s JAXP API, in xerces.jar, to

parse fetched XML data in column xmlcol:

InputSource input = UtilXML.getInputSource(resultset.getString("xmlcol"));

SAXParserFactory f = SAXParserFactory.newInstance();

SAXParser parser = f.newSAXParser();

parser.parse(input);

In the examples that follow, tab1 is a table created using the SQL statement:

create table tab1 (col1 lvarchar);

The following example fetches XML data from an LVARCHAR column into an

InputSource object for parsing. This example uses SAX parsing by invoking

the parser at org.apache.xerces.parsers.SAXParser.

try

 {

 String sql = "select col1 from tab1";

 Statement stmt = conn.createStatement();

 ResultSet r = stmt.executeQuery(sql);

 Parser p = ParserFactory.makeParser("org.apache.xerces.parsers.SAXParser");

 while(r.next())

 {

 InputSource i = UtilXML.getInputSource(r.getString(1));

 p.parse(i);

 }

 r.close();

 }

 catch (SQLException e)

 {

 // Error handling

 }

The following example fetches XML data from a text column into an

InputSource object for parsing. This is the same example as the previous one,

but it uses JAXP factory methods instead of the SAX parser to analyze the

data.

try

 {

 String sql = "select col1 from tab2";

 Statement stmt = conn.createStatement();

 ResultSet r = stmt.executeQuery(sql);

 SAXParserFactory factory = SAXParserFactory.newInstance();

 Parser p = factory.newSAXParser();

 while(r.next())

Chapter 3. Performing Database Operations 3-31

{

 InputSource i = UtilXML.getInputSource(r.getAsciiStream(1));

 p.parse(i);

 }

 r.close();

 }

 catch (Exception e)

 {

 // Error handling

 }

3-32 IBM Informix JDBC Driver Programmer’s Guide

Chapter 4. Working With Informix Types

Distinct Data Types . 4-2

Inserting Data Examples . 4-2

Retrieving Data Example . 4-4

Unsupported Methods . 4-5

BYTE and TEXT Data Types . 4-5

Caching Large Objects . 4-5

Example: Inserting or Updating Data . 4-6

Example: Selecting Data . 4-7

SERIAL and SERIAL8 Data Types . 4-9

INTERVAL Data Type . 4-10

The Interval Class . 4-10

Using Variables for Binary Qualifiers . 4-10

Using Interval Methods . 4-11

The IntervalYM Class . 4-12

Using IntervalYM Constructors . 4-12

Using IntervalYM Methods . 4-13

The IntervalDF Class . 4-14

Using IntervalDF Constructors . 4-14

Using IntervalDF Methods . 4-15

Interval Example . 4-16

Collections and Arrays . 4-16

Collection Examples . 4-17

Array Example . 4-19

Named and Unnamed Rows . 4-20

Interval and Collection Support . 4-21

Unsupported Methods . 4-21

Using the SQLData Interface . 4-22

SQLData Examples . 4-22

Using the Struct Interface . 4-25

Struct Examples . 4-26

Using the ClassGenerator Utility . 4-30

Simple Named Row Example . 4-30

Nested Named Row Example . 4-31

Caching Type Information . 4-32

Smart Large Object Data Types . 4-33

Smart Large Objects in the Database Server 4-34

Smart Large Objects in a Client Application 4-35

Steps for Creating Smart Large Objects 4-36

Steps for Accessing Smart Large Objects 4-41

Performing Operations on Smart Large Objects 4-41

Opening a Smart Large Object . 4-42

Positioning Within a Smart Large Object 4-43

Reading from a Smart Large Object . 4-43

Writing to a Smart Large Object . 4-45

© Copyright IBM Corp. 1996, 2004 4-1

Truncating a Smart Large Object . 4-45

Measuring a Smart Large Object . 4-46

Closing and Releasing a Smart Large Object 4-46

Converting IfxLocator to a Hexadecimal String 4-46

Working with Storage Characteristics . 4-48

Using System-Specified Storage Characteristics 4-49

Working with Disk-Storage Information 4-52

Working with Logging, Last-Access Time, and Data Integrity 4-53

Changing the Storage Characteristics . 4-57

Working with Status Characteristics . 4-59

Working with Locks . 4-60

Using Byte-Range Locking . 4-61

Caching Large Objects . 4-62

Smart Large Object Examples . 4-62

Creating a Smart Large Object . 4-62

Inserting Data into a Smart Large Object 4-63

Retrieving Data from a Smart Large Object 4-64

In This Chapter

This chapter explains the Informix-specific data types (other than opaque

types) supported in IBM Informix JDBC Driver. For information on opaque

types, see Chapter 5, “Working with Opaque Types,” on page 5-1. The chapter

includes the following sections:

v Distinct Data Types

v BYTE and TEXT Data Types

v SERIAL and SERIAL8 Data Types

v INTERVAL Data Type

v Collections and Arrays

v Named and Unnamed Rows

v Smart Large Object Data Types

Distinct Data Types

A distinct type can map to the underlying base type or to a user-defined Java

object. For example, a distinct type of INT can map to int or to a Java object

that encapsulates the data representation. This Java object must implement the

java.sql.SQLData interface. You must provide a custom type map as described

in Appendix C, “Mapping Data Types,” on page C-1, to map this Java object

to the corresponding SQL type name.

Inserting Data Examples

The following example shows an SQL statement that defines a distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10, 2);

CREATE TABLE distinct_tab (mymoney_col mymoney);

4-2 IBM Informix JDBC Driver Programmer’s Guide

Following is an example of mapping to the base type:

String s = "insert into distinct_tab (mymoney_col) values (?)";

System.out.println(s);

pstmt = conn.prepareStatement(s);

...

BigDecimal bigDecObj = new BigDecimal(123.45);

pstmt.setBigDecimal(1, bigDecObj);

System.out.println("setBigDecimal...ok");

pstmt.executeUpdate();

When you map to the underlying type, IBM Informix JDBC Driver performs

the mapping on the client side because the database server provides implicit

casting between the underlying type and the distinct type.

You can also map distinct types to Java objects that implement the SQLData

interface. The following example shows an SQL statement that defines a

distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10,2)

The following code maps the distinct type to a Java object named MyMoney:

import java.sql.*;

import com.informix.jdbc.*;

public class myMoney implements SQLData

{

 private String sql_type = "mymoney";

 public java.math.BigDecimal value;

 public myMoney() { }

 public myMoney(java.math.BigDecimal value)

 this.value = value;

 public String getSQLTypeName()

 {

 return sql_type;

 {

 public void readSQL(SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 value = stream.readBigDecimal();

 {

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 stream.writeBigDecimal(value);

 }

 // overides Object.equals()

 public boolean equals(Object b)

Chapter 4. Working With Informix Types 4-3

return value.equals(((myMoney)b).value);

 }

 public String toString()

 {

 return "value=" + value;

 }

}

...

String s - "insert into distinct_tab (mymoney_col) values (?)";

pstmt = conn.prepareStatement(s);

myMoney mymoney = new myMoney();

mymoney.value = new java.math.BigDecimal(123.45);

pstmt.setObject(1, mymoney);

System.out.println("setObject(myMoney)...ok");

pstmt.executeUpdate();

In this case, you use the setObject() method instead of the setBigDecimal()

method to insert data.

Retrieving Data Example

You can fetch a distinct type as its underlying base type or as a Java object, if

the mapping is defined in a custom type map. Using the previous example,

you can fetch the data as a Java object, as shown in the following example:

java.util.Map customtypemap = conn.getTypeMap();

System.out.println("getTypeMap...ok");

if (customtypemap == null)

{

 System.out.println("\n***ERROR: typemap is null!");

 return;

}

customtypemap.put("mymoney", Class.forName("myMoney"));

...

String s = "select mymoney_col from distinct_tab order by 1";

try

{

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 System.out.println("Fetching data ...");

 int curRow = 0;

 while (rs.next())

 {

 curRow++;

 myMoney mymoneyret = (myMoney)rs.getObject("mymoney_col");

 }

 System.out.println("total rows expected: " + curRow);

 stmt.close();

}

catch (SQLException e)

{

4-4 IBM Informix JDBC Driver Programmer’s Guide

System.out.println("***ERROR: " + e.getErrorCode() + " " +

 e.getMessage());

 e.printStackTrace();

}

In this case, you use the getObject() method instead of the getBigDecimal()

method to retrieve data.

Unsupported Methods

The following methods of the SQLInput and SQLOutput interfaces are not

supported for distinct types:

v java.sql.SQLInput

– readArray()

– readCharacterStream()

– readRef()

v java.sql.SQLOutput

– writeArray()

– writeCharacterStream(Reader x)

– writeRef(Ref x)

BYTE and TEXT Data Types

This section describes the Informix BYTE and TEXT data types and how to

manipulate columns of these data types with the JDBC API.

The BYTE data type is a data type for a simple large object that stores any

kind of data in an undifferentiated byte stream. Examples of this binary data

include spreadsheets, digitized voice patterns, and video clips. The TEXT data

type is a data type for a simple large object that stores any kind of text data.

It can contain both single and multibyte characters.

Columns of either data type have a theoretical limit of 231 bytes and a

practical limit determined by your disk capacity.

For more detailed information about the Informix BYTE and TEXT data types,

refer to IBM Informix: Guide to SQL Reference and IBM Informix: Guide to SQL

Syntax. You can find the online version of both of these guides at

http://www.ibm.com/software/data/informix/pubs/library/.

Caching Large Objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the

database server, the data is cached in client memory. If the size of the large

object is bigger than the value in the LOBCACHE environment variable, the

large object data is stored in a temporary file. For more information about the

LOBCACHE variable, see “Managing Memory for Large Objects” on page 7-2.

Chapter 4. Working With Informix Types 4-5

Example: Inserting or Updating Data

To insert into or update BYTE and TEXT columns, read a stream of data from

a source, such as an operating system file, and transmit it to the database as a

java.io.InputStream object. The PreparedStatement interface provides

methods for setting an input parameter to this Java input stream. When the

statement is executed, IBM Informix JDBC Driver makes repeated calls to the

input stream, reading its contents and transmitting those contents as the

actual parameter data to the database.

For BYTE data types, use the PreparedStatement.setBinaryStream() method

to set the input parameter to the InputStream object. For TEXT data types,

use the PreparedStatement.setAsciiStream() method.

The following example from the ByteType.java program shows how to insert

the contents of the operating system file data.dat into a column of data type

BYTE:

try

{

 stmt = conn.createStatement();

 stmt.executeUpdate("create table tab1(col1 byte)");

}

catch (SQLException e)

{

 System.out.println("Failed to create table ..." + e.getMessage());

}

try

{

 pstmt = conn.prepareStatement("insert into tab1 values (?)");

}

catch (SQLException e)

{

 System.out.println("Failed to Insert into tab: " + e.toString());

}

File file = new File("data.dat");

int fileLength = (int) file.length();

InputStream value = null;

FileInputStream fileinp = null;

int row = 0;

String str = null;

int rc = 0;

ResultSet rs = null;

System.out.println("Inserting data ...\n");

try

{

 fileinp = new FileInputStream(file);

 value = (InputStream)fileinp;

}

4-6 IBM Informix JDBC Driver Programmer’s Guide

catch (Exception e) {}

try

{

 pstmt.setBinaryStream(1,value,10); //set 1st column

}

catch (SQLException e)

{

 System.out.println("Unable to set parameter");

}

set_execute();

...

public static void set_execute()

{

try

{

 pstmt.executeUpdate();

}

catch (SQLException e)

{

 System.out.println("Failed to Insert into tab: " + e.toString());

 e.printStackTrace();

}

}

The example first creates a java.io.File object that represents the operating

system file data.dat. The example then creates a FileInputStream object to

read from the object of type File. The object of type FileInputStream is cast to

its superclass InputStream, which is the expected data type of the second

parameter to the PreparedStatement.setBinaryStream() method. The

setBinaryStream() method executes on the already prepared INSERT

statement, which sets the input stream parameter. Finally, the

PreparedStatement.executeUpdate() method executes, which inserts the

contents of the data.dat operating system file into the column of type BYTE.

The TextType.java program shows how to insert data into a column of type

TEXT. It is similar to inserting into a column of type BYTE, except the method

setAsciiStream() is used to set the input parameter instead of

setBinaryStream().

Example: Selecting Data

After you select from a table into a ResultSet object, you can use the

ResultSet.getBinaryStream() and ResultSet.getAsciiStream() methods to

retrieve a stream of binary or ASCII data from columns of type BYTE and

TEXT, respectively. Both methods return an InputStream object, which can be

used to read the data in chunks.

Chapter 4. Working With Informix Types 4-7

All the data in the returned stream in the current row must be read before

you call the next() method to retrieve the next row.

The following example from the ByteType.java program shows how to select

data from a column of type BYTE and print out the data to the standard

output device:

try

{

 stmt = conn.createStatement();

 rs = stmt.executeQuery("Select * from tab1");

 while(rs.next())

 {

 row++;

 value = rs.getBinaryStream(1);

 dispValue(value);

 }

}

catch (Exception e) { }

...

public static void dispValue(InputStream in)

{

 int size;

 byte buf;

 int count = 0;

 try

 {

 size = in.available();

 byte ary[] = new byte[size];

 buf = (byte) in.read();

 while(buf!=-1)

 {

 ary[count] = buf;

 count++;

 buf = (byte) in.read();

 }

 }

 catch (Exception e)

 {

 System.out.println("Error occured while reading stream ... \n");

 }

}

The example first puts the result of a SELECT statement into a ResultSet

object. It then executes the method ResultSet.getBinaryStream() to retrieve

the BYTE data into a Java InputStream object.

The method dispValue(), whose Java code is also included in the example, is

used to print out the contents of the column to the standard output device.

The dispValue() method uses byte arrays and the InputStream.read() method

to systematically read the contents of the column of type BYTE.

The TextType.java program shows how to select data from a column of type

TEXT. It is very similar to selecting from a column of type BYTE, except the

getAsciiStream() method is used instead of getBinaryStream().

4-8 IBM Informix JDBC Driver Programmer’s Guide

SERIAL and SERIAL8 Data Types

IBM Informix JDBC Driver provides support for the Informix SERIAL and

SERIAL8 data types through the methods getSerial() and getSerial8(), which

are part of the implementation of the java.sql.Statement interface.

Because the SERIAL and SERIAL8 data types do not have an obvious

mapping to any JDBC API data types from the java.sql.Types class, you must

import Informix-specific classes into your Java program to handle SERIAL and

SERIAL8 columns. To do this, add the following import line to your Java

program:

import com.informix.jdbc.*;

Use the getSerial() and getSerial8() methods after an INSERT statement to

return the serial value that was automatically inserted into the SERIAL or

SERIAL8 column of a table, respectively. The methods return 0 if any of the

following conditions are true:

v The last statement was not an INSERT statement.

v The table being inserted into does not contain a SERIAL or SERIAL8

column.

v The INSERT statement has not executed yet.

If you execute the getSerial() or getSerial8() method after a CREATE TABLE

statement, the method returns 1 by default (assuming the new table includes a

SERIAL or SERIAL8 column). If the table does not contain a SERIAL or

SERIAL8 column, the method returns 0. If you assign a new serial starting

number, the method returns that number.

If you want to use the getSerial() and getSerial8() methods, you must cast the

Statement or PreparedStatement object to IfmxStatement, the

Informix-specific implementation of the Statement interface. The following

example shows how to perform the cast:

cmd = "insert into serialTable(i) values (100)";

stmt.executeUpdate(cmd);

System.out.println(cmd+"...okay");

int serialValue = ((IfmxStatement)stmt).getSerial();

System.out.println("serial value: " + serialValue);

If you want to insert consecutive serial values into a column of data type

SERIAL or SERIAL8, specify a value of 0 for the SERIAL or SERIAL8 column

in the INSERT statement. When the column is set to 0, the database server

assigns the next-highest value.

For more detailed information about the Informix SERIAL and SERIAL8 data

types, refer to IBM Informix: Guide to SQL Reference and IBM Informix: Guide to

Chapter 4. Working With Informix Types 4-9

SQL Syntax. You can find both of these guides online at

http://www.ibm.com/software/data/informix/pubs/library/.

INTERVAL Data Type

The Informix INTERVAL data type stores a value that represents a span of

time. INTERVAL data types comprise two types: year-month intervals and

day-time intervals. A year-month interval can represent a span of years and

months, and a day-time interval can represent a span of days, hours, minutes,

seconds, and fractions of a second. For more information about the

INTERVAL data type and definitions of qualifier, precision, and fraction, refer to

the following manuals:

v IBM Informix: Guide to SQL Tutorial

v IBM Informix: Guide to SQL Reference

v IBM Informix: Guide to SQL Syntax

You can find these guides online at

http://www.ibm.com/software/data/informix/pubs/library/.

The Interval Class

The com.informix.lang.Interval class is an Informix-specific extension to the

JDBC specification from Sun Microsystems. Interval is the base class for the

INTERVAL data type. Interval has two subclasses: IntervalYM (for year-month

qualifiers) and IntervalDF (for day-time qualifiers). You use these subclasses to

create and manipulate INTERVAL data types.

Tip: Many of the Interval, IntervalYM, and IntervalDF constructors take a

Connection object as a parameter. This passes the value of the

CLIENT_LOCALE environment variable to the Interval, IntervalYM, or

IntervalDF object, which allows the display of localized error messages if

an exception is thrown. For more information, see “Support for Localized

Error Messages” on page 6-18.

For information about the string INTERVAL formats in this section, refer to

the IBM Informix: Guide to SQL Syntax.

This section discusses many of the methods you can use with the INTERVAL

data types. For complete reference information, see the online reference

documentation in the directory doc/javadoc/* after you install your software.

(The doc directory is a subdirectory of the directory where you installed

IBM Informix JDBC Driver.)

Using Variables for Binary Qualifiers

You can use string qualifiers to manipulate INTERVAL data types, but using

binary qualifiers results in faster performance. The following variables are

4-10 IBM Informix JDBC Driver Programmer’s Guide

defined in the Interval base class and represent the time unit (start and end

code) of a field in the binary qualifier. To use these variables, instantiate

objects of the IntervalYM and IntervalDF classes, which inherit these

variables from the Interval base class.

Variable Description

TU_YEAR Time unit for the YEAR qualifier field

TU_MONTH Time unit for the MONTH qualifier field

TU_DAY Time unit for the DAY qualifier field

TU_HOUR Time unit for the HOUR qualifier field

TU_MINUTE Time unit for the MINUTE qualifier field

TU_SECOND Time unit for the SECOND qualifier field

TU_FRAC Time unit for the leading FRACTION qualifier field

TU_F1 Time unit for the ending field of the first position of

FRACTION

TU_F2 Time unit for the ending field of the second position of

FRACTION

TU_F3 Time unit for the ending field of the third position of

FRACTION

TU_F4 Time unit for the ending field of the fourth position of

FRACTION

TU_F5 Time unit for the ending field of the fifth position of

FRACTION

Using Interval Methods

You can use the Interval methods to extract information about binary

qualifiers. To use these methods, instantiate objects of the IntervalYM and

IntervalDF classes, which inherit these variables from the Interval base class.

Some of the tasks you can perform and the methods you can use follow:

v Extracting the length of a qualifier:

public static byte getLength(short qualifier)

v Extracting the starting field code (one of the TU_XXX variables) from a

qualifier:

public static byte getStartCode(short qualifier)

v Extracting the ending field code (one of the TU_XXX variables) from a

qualifier:

public static byte getEndCode(short qualifier)

Chapter 4. Working With Informix Types 4-11

v Obtaining the string value that corresponds to the TU_XXX value of part of

an interval (for example, getFieldName(TU_YEAR) returns the string year):

public static String getFieldName(byte code)

v Obtaining the entire name of the interval as a character string, taking a

qualifier as input:

public static String getIfxTypeName(int type,

 short qualifier)

v Obtaining the number of digits in the FRACTION part of the INTERVAL

data type:

public static byte getScale(short qualifier)

v Creating a binary qualifier from a length, start code (TU_XXX), and end

code (TU_XXX):

public static short getQualifier(byte length, byte

 startCode, byte endCode) throws SQLException

For example, getQualifier(4, TU_YEAR, TU_MONTH) creates a binary

representation of the YEAR TO MONTH qualifier.

The IntervalYM Class

The com.informix.lang.IntervalYM class allows you to manipulate

year-month intervals.

Using IntervalYM Constructors

The default constructor is defined as follows:

public IntervalYM() throws SQLException

Use this second version of the constructor to display localized error messages

if an exception is thrown:

public IntervalYM(Connection conn) throws SQLException

Use the following constructors to create year-month intervals from specific

input values:

v Two time stamps, returning the IntervalYM value that equals Timestamp1 -

Timestamp2:

public IntervalYM(Timestamp t1, Timestamp t2) throws

 SQLException

public IntervalYM (Timestamp t1, Timestamp t2, Connection

 conn) throws SQLException

The second version allows you to support localized error messages.

v Year and month values (large month values are converted to year):

public IntervalYM(int years, int months) throws

 SQLException

public IntervalYM(int years, int months,

 Connection conn) throws SQLException

4-12 IBM Informix JDBC Driver Programmer’s Guide

The second version allows you to support localized error messages.

v A month value and the encoded qualifier:

public IntervalYM(int months, short qualifier,

 Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-11. This constructor supports localized

error messages.

v A string:

public IntervalYM(String string) throws SQLException

public IntervalYM(String string, Connection conn) throws

 SQLException

The second version allows you to support localized error messages.

v A string and qualifier:

public IntervalYM(String string, short qualifier,

 Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-11. This constructor supports localized

error messages.

v A string and qualifier information:

public IntervalYM(String string, int length,

 byte startCode, byte endCode) throws SQLException

public IntervalYM(String string, int length,

 byte startCode, byte endCode, Connection conn) throws

 SQLException

The second version allows you to support localized error messages.

Using IntervalYM Methods

The following methods allow you to manipulate year-month intervals. (You

can also use the Interval methods, described previously.) Some of the tasks

you can perform using IntervalYM methods include the following:

v Comparing two intervals:

boolean equals(Object other)

boolean greaterThan(IntervalYM other)

boolean lessThan(IntervalYM other)

v Setting a value for an interval from:

– A string:

void fromString(String other)

void set(String string)

– Year and month values (large month values are converted to years):

void set(int years, int months)

– Two time stamps:

void set(Timestamp t1, Timestamp t2)

v Setting the qualifier for an interval:

Chapter 4. Working With Informix Types 4-13

– From the length, start code, and end code:

void setQualifier(int length, byte startcode, byte

 endcode)

– Using an existing qualifier:

void setQualifier(short qualifier)

v Obtaining the number of months in the interval:

long getMonths()

v Creating a string representation of the interval in the format yyyy-mm:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

The IntervalDF Class

The com.informix.lang.IntervalDF class allows you to manipulate intervals.

Using IntervalDF Constructors

The default constructor is defined as follows:

public IntervalDF() throws SQLException

Use this second version of the default constructor to display localized error

messages if an exception is thrown:

public IntervalDF(Connection conn) throws SQLException

Use the following constructors to create intervals from specific input values:

v Two time stamps t1 and t2, returning the IntervalDF value that equals t1 -

t2:

public IntervalDF(Timestamp t1, Timestamp t2)

 throws SQLException

public IntervalDF(Timestamp t1, Timestamp t2,

 Connection conn) throws SQLException

The second version allows you to support localized error messages.

v A number of seconds and nanoseconds (large second values are converted

to minutes, hours, or days):

public IntervalDF(long seconds, long nanos)

 throws SQLException

public IntervalDF(long seconds, long nanos, Connection conn) throws SQLException

The second version allows you to support localized error messages.

v A number of seconds, a number of nanoseconds, and qualifier:

public IntervalDF(long seconds, long nanos,

 short qualifier) throws SQLException

public IntervalDF(long seconds, long nanos,

short qualifier, Connection conn) throws SQLException

4-14 IBM Informix JDBC Driver Programmer’s Guide

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-11. The second version allows you to

support localized error messages.

v A string:

public IntervalDF(String string)

 throws SQLException

public IntervalDF(String string, Connection conn)

 throws SQLException

The second version allows you to support localized error messages.

When you use these constructors, the default qualifier is set to the

following values:

leading field precision: 2start code: TU_DAYend code: TU_F5

For information about string INTERVAL formats, refer to the IBM Informix:

Guide to SQL Syntax.
v A string and a qualifier:

public IntervalDF(String string, short qualifier)

 throws SQLException

public IntervalDF(String string, short qualifier, Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-11. The second version allows you to

support localized error messages.

v A string and qualifier information:

public IntervalDF(String string, int length, byte startcode,

byte endcode) throws SQLException

public IntervalDF(String string, int length, byte startcode,

byte endcode, Connection conn) throws SQLException

The second version allows you to support localized error messages.

Using IntervalDF Methods

The following methods allow you to manipulate intervals. (You can also use

the Interval methods, described previously.) The tasks you can perform, and

the methods you can use, are as follows:

v Comparing two intervals:

boolean equals(Object other)

boolean greaterThan(IntervalDF other)

boolean lessThan(IntervalDF other)

v Setting a value for an interval from:

– A string:

void fromString(String other)

void set(String string)

– Second and nanosecond values (large second values are converted to

minutes, hours, or days):

void set(long seconds, long nanos)

Chapter 4. Working With Informix Types 4-15

– Two time stamps:

void set(Timestamp t1, Timestamp t2)

v Setting the qualifier from the length, start code, and end code:

void setQualifier(int length, byte startcode, byte endcode)

v Obtaining the number of nanoseconds in the interval:

long getNanoSeconds()

v Obtaining the number of seconds in the interval:

long getSeconds()

v Creating a string representation of the interval in the format ddddd

hh:mm:ss.nano:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

Interval Example

The Intervaldemo.java program, which is included in IBM Informix JDBC

Driver, shows how to insert into and select from the two types of INTERVAL

data types.

Collections and Arrays

The Sun Microsystem JDBC 3.0 specification describes only one method to

exchange collection data between a Java client and a relational database: an

array.

Because the array interface does not include a constructor, IBM Informix

JDBC Driver includes an extension that allows a java.util.Collection object to

be used in the PreparedStatement.setObject() and ResultSet.getObject()

methods.

If you prefer to use an Array object, use the PreparedStatement.setArray()

and ResultSet.getArray() methods. A Collection object is easier to use, but an

Array object conforms to JDBC 3.0 standards.

By default, the driver maps LIST columns to java.util.ArrayList objects and

SET and MULTISET columns to java.util.HashSet objects during a fetch. You

can override these defaults, but the class you use must implement the

java.util.Collection interface.

To override this default mapping, you can use other classes in the

java.util.Collection interface, such as the TreeSet class. You can also create

your own classes that implement the java.util.Collection interface. In either

case, you must provide a customized type map using the

Connection.setTypeMap() method.

4-16 IBM Informix JDBC Driver Programmer’s Guide

During an INSERT operation, any java.util.Collection object that is an

instance of the java.util.Set interface is mapped to an Informix MULTISET

data type. An instance of the java.util.List interface is mapped to an Informix

LIST data type. You can override these defaults by creating a customized type

mapping.

For information about customized type mappings, see Appendix C.

Important: Sets are by definition unordered. If you select collection data using

a HashSet object, the order of the elements in the HashSet object

might not be the same as the order specified when the set was

inserted. For example, if the data on the database server is the set

{1, 2, 3}, it might be retrieved into the HashSet object as {3, 2, 1}

or any other order.

The complete versions of all of the examples in the following sections are in

the complex-types directory where you installed the driver. For more

information, see Appendix A, “Sample Code Files,” on page A-1.

Collection Examples

Following is a sample database schema:

create table tab (a set(integer not null), b integer);

insert into tab values ("set{1, 2, 3}", 10);

The following is a fetch example using a java.util.HashSet object:

java.util.HashSet set;

PreparedStatement pstmt;

ResultSet rs;

pstmt = conn.prepareStatement("select * from tab");

System.out.println("prepare ... ok");

rs = pstmt.executeQuery();

System.out.println("executeQuery ... ok");

rs.next();

set = (HashSet) rs.getObject(1);

System.out.println("getObject() ... ok");

/* The user can now use HashSet.iterator() to extract

 * each element in the collection.

 */

Iterator it = set.iterator();

Object obj;

Class cls = null;

int i = 0;

while (it.hasNext())

 {

 obj = it.next();

 if (cls == null)

 {

 cls = obj.getClass();

 System.out.println(" Collection class: " + cls.getName());

 }

 System.out.println(" element[" + i + "] = " +

Chapter 4. Working With Informix Types 4-17

obj.toString());

 i++;

 }

pstmt.close();

In the set = (HashSet) rs.getObject(1) statement of this example,

IBM Informix JDBC Driver gets the type for column 1. Because it is a SET

type, a HashSet object is instantiated. Next, each collection element is

converted into a Java object and inserted into the collection.

The following fetch example uses a java.util.TreeSet object:

java.util.TreeSet set;

PreparedStatement pstmt;

ResultSet rs;

/*

 * Fetch a SET as a TreeSet instead of the default

 * HashSet. In this example a new java.util.Map object has

 * been allocated and passed in as a parameter to getObject().

 * Connection.getTypeMap() could have been used as well.

 */

java.util.Map map = new HashMap();

map.put("set", Class.forName("java.util.TreeSet"));

System.out.println("mapping ... ok");

pstmt = conn.prepareStatement("select * from tab");

System.out.println("prepare ... ok");

rs = pstmt.executeQuery();

System.out.println("executeQuery ... ok");

rs.next();

set = (TreeSet) rs.getObject(1, map);

System.out.println("getObject(Map) ... ok");

/* The user can now use HashSet.iterator() to extract

 * each element in the collection.

 */

Iterator it = set.iterator();

Object obj;

Class cls = null;

int i = 0;

while (it.hasNext())

 {

 obj = it.next();

 if (cls == null)

 {

 cls = obj.getClass();

 System.out.println(" Collection class: " + cls.getName());

 }

 System.out.println(" element[" + i + "] = " +

 obj.toString());

 i++;

 }

pstmt.close();

In the map.put("set", Class.forName("java.util.TreeSet")); statement,

the default mapping of set = HashSet is overridden.

4-18 IBM Informix JDBC Driver Programmer’s Guide

In the set = (TreeSet) rs.getObject(1, map) statement, IBM Informix JDBC

Driver gets the type for column 1 and finds that it is a SET object. Then the

driver looks up the type mapping information, finds TreeSet, and instantiates

a TreeSet object. Next, each collection element is converted into a Java object

and inserted into the collection.

For more information about the uses of HashSet and TreeSet objects, refer to

the class definitions in the documentation from Sun Microsystems.

The following example shows an insert. This example inserts the set (0, 1, 2, 3,

4) into a SET column:

java.util.HashSet set = new HashSet();

Integer intObject;

int i;

/* Populate the Java collection */

for (i=0; i < 5; i++)

 {

 intObject = new Integer(i);

 set.add(intObject);

 }

System.out.println("populate java.util.HashSet...ok");

PreparedStatement pstmt = conn.prepareStatement

 ("insert into tab values (?, 20)");

System.out.println("prepare...ok");

pstmt.setObject(1, set);

System.out.println("setObject()...ok");

pstmt.executeUpdate();

System.out.println("executeUpdate()...ok");

pstmt.close();

The pstmt.setObject(1, set) statement in this example first serializes each

element of the collection. Next, the type information is constructed as each

element is converted into a Java object. If the types of any elements in the

collection do not match the type of the first element, an exception is thrown.

The type information is sent to the database server.

Array Example

Following is a sample database schema:

CREATE TABLE tab (a set(integer not null), b integer);

INSERT INTO tab VALUES ("set{1,2,3}", 10);

The following example fetches data using a java.sql.Array object:

PreparedStatement pstmt = conn.prepareStatement("select a from tab");

System.out.println("prepare ... ok");

ResultSet rs = pstmt.executeQuery();

System.out.println("executeQuery ... ok");

rs.next();

Chapter 4. Working With Informix Types 4-19

java.sql.Array array = rs.getArray(1);

System.out.println("getArray() ... ok");

pstmt.close();

/*

 * The user can now materialize the data into either

 * an array or else a ResultSet. If the collection elements

 * are primitives then the array should be an array of primitives,

 * not Objects. Mapping data can be provided at this point.

 */

Object obj = array.getArray((long) 1, 2);

int [] intArray = (int []) obj; // cast it to an array of ints

int i;

for (i=0; i < intArray.length; i++)

 {

 System.out.println("integer element = " + intArray[i]);

 }

pstmt.close();

The java.sql.Array array = rs.getArray(1) statement instantiates a

java.sql.Array object. Data is not converted at this point.

The Object obj = array.getArray((long) 1, 2) statement converts data into

an array of integers (int types, not Integer objects). Because the getArray()

method has been called with index and count values, only a subset of data is

returned.

Named and Unnamed Rows

The Sun Microsystem JDBC specification refers to an SQL type called a

structured type or struct, which is equivalent to an Informix named row. The

specification defines two approaches to exchange structured-type data

between a Java client and a relational database:

v Using the SQLData interface. A single Java class per named row type

implements the SQLData interface. The class has a member for each

element in the named row.

v Using the Struct interface. This interface instantiates the necessary Java

object for each element in the named row and constructs an array of

java.util.Object Java objects.

Whether IBM Informix JDBC Driver instantiates a Java object or a Struct

object for a fetched named row depends on whether there is a customized

type-mapping entry or not, as follows:

v If there is an entry for a named row in the Connection.getTypeMap() map,

or if you provided a type mapping using the getObject() method, a single

Java object is instantiated.

4-20 IBM Informix JDBC Driver Programmer’s Guide

v If there is no entry for a named row in the Connection.getTypeMap() map,

and if you have not provided a type mapping using the getObject()

method, a Struct object is instantiated.

Unnamed rows are always fetched into Struct objects.

Important: Regardless of whether you use the SQLData or Struct interface, if

a named or unnamed row contains an opaque data type column,

there must be a type-mapping entry for it. If you are using the

Struct interface to access a row that contains an opaque data type

column, you need a customized type map for the opaque data

type column, but not for the row as a whole.

For more information about custom type mapping, see Appendix C.

Interval and Collection Support

The java.sql.SQLOutput and java.sql.SQLInput methods are extended to

support Collection and Interval objects in named and unnamed rows. These

extensions include the following methods:

v The com.informix.jdbc.IfmxComplexSQLInput.readObject() method

returns the appropriate java.util.Collection object if the data is a set, list, or

multiset data type.

v The com.informix.jdbc.IfmxComplexSQLInput.readInterval() method

returns the appropriate IntervalYM or IntervalDF object for an interval

data type, depending on the qualifier.

v The com.informix.jdbc.IfmxComplexSQLOutput.writeObject() method

accepts objects derived from the java.util.Collection interface or from

IntervalYM and IntervalDF objects.

Unsupported Methods

The following SQLInput methods are not supported for selecting a ROW

column into a Java object that implements SQLData:

v readByte()

v readCharacterStream()

v readRef()

The following SQLOutput methods are not supported for inserting a Java

object that implements SQLData into a ROW column:

v writeByte(byte)

v writeCharacterStream(java.io.Reader x)

v writeRef(Ref x)

Chapter 4. Working With Informix Types 4-21

Using the SQLData Interface

The Java class for the named row must implement the SQLData interface. The

class must have a member for each element in the named row but can have

other members in addition to these. The members can be in any order and

need not be public.

The Java class must implement the writeSQL(), readSQL(), and

getSQLTypeName() methods for the named row as defined in the SQLData

interface, but can implement additional methods. You can use the

ClassGenerator utility to create the class; for more information, see “Using the

ClassGenerator Utility” on page 4-30.

To link this Java class with the named row, create a customized type mapping

using the Connection.setTypeMap() method or the getObject() method. For

more information about type mapping, see Appendix C.

You cannot use the SQLData interface to access unnamed rows.

SQLData Examples

The complete versions of all of the examples in this section are in the

demo/complex-types directory where you installed the driver. For more

information, see Appendix A.

The following example includes a Java class that implements the

java.sql.SQLData interface.

Here is a sample database schema:

CREATE ROW TYPE fullname_t (first char(20), last char(20));

CREATE ROW TYPE person_t (id int, name fullname_t, age int);

CREATE TABLE teachers (person person_t, dept char (20));

INSERT INTO teachers VALUES ("row(100, row(‘Bill’, ’Smith’), 27)", "physics");

This is the fullname Java class:

import java.sql.*;

public class fullname implements SQLData

{

 public String first;

 public String last;

 private String sql_type = "fullname_t";

 public String getSQLTypeName()

 {

 return sql_type;

 }

 public void readSQL (SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

4-22 IBM Informix JDBC Driver Programmer’s Guide

first = stream.readString();

 last = stream.readString();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeString(first);

 stream.writeString(last);

 }

 /*

 * Function not required by SQLData interface, but makes

 * it easier for displaying results.

 */

 public String toString()

 {

 String s = "fullname: ";

 s += "first: " + first + " last: " + last;

 return s;

 }

}

This is the person Java class:

import java.sql.*;

public class person implements SQLData

{

 public int id;

 public fullname name;

 public int age;

 private String sql_type = "person_t";

 public String getSQLTypeName()

 {

 return sql_type;

 }

 public void readSQL (SQLInput stream, String type) throws SQLException

 {

 sql_type = type;

 id = stream.readInt();

 name = (fullname)stream.readObject();

 age = stream.readInt();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeInt(id);

 stream.writeObject(name);

 stream.writeInt(age);

 }

 public String toString()

 {

 String s = "person:";

 s += "id: " + id + "\n";

 s += " name: " + name.toString() + "\n";

Chapter 4. Working With Informix Types 4-23

s += " age: " + age + "\n";

 return s;

 }

}

Here is an example of fetching a named row:

java.util.Map map = conn.getTypeMap();

conn.setTypeMap(map);

map.put("fullname_t", Class.forName("fullname"));

map.put("person_t", Class.forName("person"));

...

PreparedStatement pstmt;

ResultSet rs;

pstmt = conn.prepareStatement("select person from teachers");

System.out.println("prepare ...ok");

rs = pstmt.executeQuery();

System.out.println("executetQuery()...ok");

while (rs.next())

 {

 person who = (person) rs.getObject(1);

 System.out.println("getObject()...ok");

 System.out.println("Data fetched:");

 System.out.println("row: " + who.toString());

 }

pstmt.close();

The conn.getTypeMap() method returns the named row mapping information

from the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named row

on the database server, fullname_t, and the Java class fullname, and between

the named row on the database server, person_t, and the Java class person.

The person who = (person) rs.getObject(1) statement retrieves the named

row into the Java object who. IBM Informix JDBC Driver recognizes that this

object who is a named row, a distinct type, or an opaque type, because the

information sent by the database server has an extended name of person_t.

The driver looks up person_t and finds it is a named row. The driver calls the

map.get() method with the key person_t, which returns the person class

object. An object of class person is instantiated.

The readSQL() method in the person class calls methods defined in the

SQLInput interface to convert each field in the ROW column into a Java

object and assign each to a member in the person class.

The following example shows a method for inserting a Java object into a

named row column using the setObject() method:

4-24 IBM Informix JDBC Driver Programmer’s Guide

java.util.Map map = conn.getTypeMap();

map.put("fullname_t", Class.forName("fullname"));

map.put("person_t", Class.forName("person"));

...

PreparedStatement pstmt;

System.out.println("Populate person and fullname objects");

person who = new person();

fullname name = new fullname();

name.last = "Jones";

name.first = "Sarah";

who.id = 567;

who.name = name;

who.age = 17;

String s = "insert into teachers values (?, ’physics’)";

pstmt = conn.prepareStatement (s);

System.out.println("prepared...ok");

pstmt.setObject(1, who);

System.out.println("setObject()...ok");

int rowcount = pstmt.executeUpdate();

System.out.println("executeUpdate()...ok");

pstmt.close();

The conn.getTypeMap() method returns the named row mapping information

from the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named row

on the database server, fullname_t, and the Java class fullname and between

the named row on the database server, person_t, and the Java class person.

IBM Informix JDBC Driver recognizes that the object who implements the

SQLData interface, so it is either a named row, a distinct type, or an opaque

type. IBM Informix JDBC Driver calls the getSQLTypeName() method for this

object (required for classes implementing the SQLData interface), which

returns person_t. The driver looks up person_t and finds it is a named row.

The writeSQL() method in the person class calls the corresponding

SQLOutput.writeXXX() method for each member in the class, each of which

maps to one field in the named row person_t. The writeSQL() method in the

class contains calls to the SQLOutput.writeObject(name) and

SQLOutput.writeInt(id) methods. Each member of the class person is

serialized and written into a stream.

Using the Struct Interface

The JDBC documentation does not specify that Struct objects can be

parameters to the PreparedStatement.setObject() method. However,

IBM Informix JDBC Driver can handle any object passed by the

Chapter 4. Working With Informix Types 4-25

PreparedStatement.setObject() or ResultSet.getObject() method that

implements the java.sql.Struct interface.

You must use the Struct interface to access unnamed rows.

You do not need to create your own class to implement the java.sql.Struct

interface. However, you must perform a fetch to retrieve the ROW data and

type information before you can insert or update the ROW data.

IBM Informix JDBC Driver automatically calls the getSQLTypeName()

method, which returns the type name for a named row or the row definition

for an unnamed row.

If you create your own class to implement the Struct interface, the class you

create must implement all the java.sql.Struct methods, including the

getSQLTypeName() method. You can choose what the getSQLTypeName()

method returns.

Although you must return the row definition for unnamed rows, you can

return either the row name or the row definition for named rows. Each has

advantages:

v Row definition. The driver does not need to query the database server for

the type information. In addition, the row definition returned does not have

to match the named row definition exactly, because the database server

provides casting, if needed. This is useful if you want to use strings to

insert into an opaque type in a row, for example.

v Row name. If a user-defined routine takes a named row as a parameter, the

signature has to match, so you must pass in a named row.

For more information about user-defined routines, see the following

manuals: IBM Informix: J/Foundation Developer's Guide (for information

specific to Java); IBM Informix: User-Defined Routines and Data Types

Developer's Guide and IBM Informix: Guide to SQL Reference (both for general

information about user-defined routines); and IBM Informix: Guide to SQL

Syntax (for the syntax to create and invoke user-defined routines).

Important: If you use the Struct interface for a named row and provide

type-mapping information for the named row, a

ClassCastException message is generated when the

ResultSet.getObject() method is called, because Java cannot cast

between an SQLData object and a Struct object.

Struct Examples

The complete versions of all of the examples in this section are in the

demo/complex-types directory where you installed the driver. For more

information, see Appendix A.

4-26 IBM Informix JDBC Driver Programmer’s Guide

This example fetches an unnamed ROW column. Here is a sample database

schema:

CREATE TABLE teachers

 (

 person row(

 id int,

 name row(first char(20), last char(20)),

 age int

),

 dept char(20)

);

INSERT INTO teachers VALUES ("row(100, row(’Bill’, ’Smith’), 27)", "physics");

This is the rest of the example:

PreparedStatement pstmt;

ResultSet rs;

pstmt = conn.prepareStatement("select person from teachers");

System.out.println("prepare ...ok");

rs = pstmt.executeQuery();

System.out.println("executetQuery()...ok");

rs.next();

Struct person = (Struct) rs.getObject(1);

System.out.println("getObject()...ok");

System.out.println("\nData fetched:");

Integer id;

Struct name;

Integer age;

Object[] elements;

/* Get the row description */

String personRowType = person.getSQLTypeName();

System.out.println("person row description: " + personRowType);

System.out.println("");

/* Convert each element into a Java object */

elements = person.getAttributes();

/*

 * Run through the array of objects in ’person’ getting out each structure

 * field. Use the class Integer instead of int, because int is not an object.

 */

id = (Integer) elements[0];

name = (Struct) elements[1];

age = (Integer) elements[2];

System.out.println("person.id: " + id);

System.out.println("person.age: " + age);

System.out.println("");

/* Convert ’name’ as well. */

/* get the row definition for ’name’ */

String nameRowType = name.getSQLTypeName();

System.out.println("name row description: " + nameRowType);

/* Convert each element into a Java object */

elements = name.getAttributes();

/*

Chapter 4. Working With Informix Types 4-27

* run through the array of objects in ’name’ getting out each structure

 * field.

 */

String first = (String) elements[0];

String last = (String) elements[1];

System.out.println("name.first: " + first);

System.out.println("name.last: " + last);

pstmt.close();

The Struct person = (Struct) rs.getObject(1) statement instantiates a

Struct object if column 1 is a ROW type and there is no extended data type

name (if it is a named row).

The elements = person.getAttributes(); statement performs the following

actions:

v Allocates an array of java.lang.Object objects with the correct number of

elements

v Converts each element in the row into a Java object

If the element is an opaque type, you must provide type mapping in the

Connection object or pass in a java.util.Map object in the call to the

getAttributes() method.

The String personrowType = person.getSQLTypeName(); statement returns the

row type information. If this type is a named row, the statement returns the

name. Because the type is not a named row, the statement returns the row

definition: row(int id, row(first char(20), last char(20)) name, int age).

The example then goes through the same steps for the unnamed row name as

it did for the unnamed row person.

The following example uses a user-created class, GenericStruct, which

implements the java.sql.Struct interface. As an alternative, you can use a

Struct object returned from the ResultSet.getObject() method instead of the

GenericStruct class.

import java.sql.*;

import java.util.*;

public class GenericStruct implements java.sql.Struct

{

 private Object [] attributes = null;

 private String typeName = null;

 /*

 * Constructor

 */

 GenericStruct() { }

 GenericStruct(String name, Object [] obj)

 {

 typeName = name;

 attributes = obj;

4-28 IBM Informix JDBC Driver Programmer’s Guide

}

 public String getSQLTypeName()

 {

 return typeName;

 }

 public Object [] getAttributes()

 {

 return attributes;

 }

 public Object [] getAttributes(Map map) throws SQLException

 {

 // this class shouldn’t be used if there are elements

 // that need customized type mapping.

 return attributes;

 }

 public void setAttributes(Object [] objArray)

 {

 attributes = objArray;

 }

 public void setSQLTypeName(String name)

 {

 typeName = name;

 }

}

The following Java program inserts a ROW column:

PreparedStatement pstmt;

ResultSet rs;

GenericStruct gs;

String rowType;

pstmt = conn.prepareStatement("insert into teachers values (?, ’Math’)");

System.out.println("prepare insert...ok\n");

System.out.println("Populate name struct...");

Object[] name = new Object[2];

// populate inner row first

name[0] = new String("Jane");

name[1] = new String("Smith");

rowType = "row(first char(20), last char(20))";

gs = new GenericStruct(rowType, name);

System.out.println("Instantiate GenericStructObject...okay\n");

System.out.println("Populate person struct...");

// populate outer row next

Object[] person = new Object[3];

person[0] = new Integer(99);

person[1] = gs;

person[2] = new Integer(56);

rowType = "row(id int, " +

 "name row(first char(20), last char(20)), " +

 "age int)";

gs = new GenericStruct(rowType, person);

System.out.println("Instantiate GenericStructObject...okay\n");

Chapter 4. Working With Informix Types 4-29

pstmt.setObject(1, gs);

System.out.println("setObject()...okay");

pstmt.executeUpdate();

System.out.println("executeUpdate()...okay");

pstmt.close();

At the pstmt.setObject(1, gs) statement in this example, IBM Informix

JDBC Driver determines that the information is to be transported from the

client to the database server as a ROW column, because the GenericStruct

object is an instance of the java.sql.Struct interface.

Each element in the array is serialized, verifying that each element matches

the type as defined by the getSQLTypeName() method.

Using the ClassGenerator Utility

The ClassGenerator utility generates a Java class for a named row type

defined in the system catalog. The utility is an Informix extension to Sun’s

JDBC specification.

The created Java class implements the java.sql.SQLData interface. The class

has members for each field in the named row. The readSQL(), writeSQL(),

and SQLData.readSQL() methods read the attributes in the order in which

they appear in the definition of the named row type in the database. Similarly,

writeSQL() writes the data to the stream in that order.

ClassGenerator is packaged in the ifxtools.jar file, so the CLASSPATH

environment variable must point to ifxtools.jar.

The syntax for using ClassGenerator is as follows:

java ClassGenerator rowtypename [-u URL] [-c classname]

The default value for classname is the value for rowtypename.

If the URL parameter is not specified, the required information is retrieved

from the setup.std file in the home directory.

The structure of setup.std is as follows:

URL jdbc:host-name:port-number

informixserver informixservername

database database

user user

passwd password

Simple Named Row Example

To use ClassGenerator, you first create the named row on the database server

as shown in this example:

create row type employee (name char (20), age int);

4-30 IBM Informix JDBC Driver Programmer’s Guide

Next, run ClassGenerator:

java ClassGenerator employee

The class generator generates employee.java, as shown next, and retrieves the

database URL information from setup.std, which has the following contents:

URL jdbc:davinci:1528

database test

user scott

passwd tiger

informixserver picasso_ius

Following is the generated .java file:

import java.sql.*;

import java.math.*;

public class employee implements SQLData

{

 public String name;

 public int age;

 private String sql_type;

 public String getSQLTypeName() { return "employee"; }

 public void readSQL (SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 name = stream.readString();

 age = stream.readInt();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeString(name);

 stream.writeInt(age);

 }

}

Nested Named Row Example

To use ClassGenerator for a nested row, you first create the named row on

the database server:

create row type manager (emp employee, salary int);

Next, run ClassGenerator. In this case, the setup.std file is not consulted,

because you provide all the needed information at the command line:

java ClassGenerator manager -c Manager -u "jdbc:davinci:1528/test:user=scott;

password=tiger;informixserver=picasso_ius"

The -c option defines the Java class you are creating, which is Manager (with

uppercase M).

Chapter 4. Working With Informix Types 4-31

The preceding command generates the following Java class:

import java.sql.*;

import java.math.*;

public class Manager implements SQLData

{

 public employee emp;

 public int salary;

 private String sql_type;

 public String getSQLTypeName() { return "manager"; }

 public void readSQL (SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 emp = (employee)stream.readObject();

 salary = stream.readInt();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeObject(emp);

 stream.writeInt(salary);

 }

}

Caching Type Information

When objects of some data types insert data into columns of certain other

data types, IBM Informix JDBC Driver verifies that the data provided matches

the data the database server expects by calling the

SQLData.getSQLTypeName() method. The driver asks the database server for

the type information with each insertion.

This occurs in the following cases:

v When an SQLData object inserts data into an opaque type column and

getSQLTypeName() returns the name of the opaque type

v When a Struct or SQLData object inserts data into a row column and

getSQLTypeName() returns the name of a named row

v When an SQLData object inserts data into a DISTINCT type column

You can set an environment variable, ENABLE_CACHE_TYPE=1, in the database

URL to have the driver cache the type information the first time it is retrieved.

The driver then asks the cache for the type information before requesting the

data from the database server.

4-32 IBM Informix JDBC Driver Programmer’s Guide

Smart Large Object Data Types

A smart large object is a large object with the following features:

v A smart large object can hold a very large amount of data.

Currently, a single smart large object can hold up to four terabytes of data.

This data is stored in a separate disk space called an sbspace.

v A smart large object is recoverable.

The database server can log changes to smart large objects and therefore

can recover smart-large-object data in the event of a system or hardware

failure. Logging of smart large objects is not the default behavior.

v A smart large object supports random access to its data.

Access to a simple large object (BYTE or TEXT) is on an “all or nothing”

basis; that is, the database server returns all of the simple large-object data

that you request at one time. With smart large objects, you can seek to a

desired location and read or write the desired number of bytes.

v You can customize storage characteristics of a smart large object.

When you create a smart large object, you can specify storage

characteristics for the smart large object such as:

– Whether the database server logs the smart large object in accordance

with the current database log mode

– Whether the database server keeps track of the last time the smart large

object was accessed

– Whether the database server uses page headers to detect data corruption

Smart large objects are stored in the database as BLOB and CLOB data types,

which you can access in two ways:

v In IBM Informix JDBC Driver 3.0, and later, and IDS servers that support

smart large object data types, you can use the standard JDBC API methods

described in the JDBC 3.0 specifications from Sun Microsystems. This is the

simpler approach.

The following JDBC 3.0 methods for BLOB and CLOB internal update have

already been implemented in previous releases:

int setBytes(long, byte[]) throws SQLException

void truncate(long) throws SQLException

The following JDBC 3.0 methods from the BLOB interface are implemented

in the JDBC Driver, Version 3.0 release:

OutputStream setBinaryStream(long) throws SQLException

int setBytes(long, byte[], int, int) throws SQLException

The following JDBC 3.0 methods from the CLOB interface are implemented

in the JDBC Driver, Version 3.0 release:

OutputStream setAsciiStream(long) throws SQLException

Writer setCharacterStream(long) throws SQLException

Chapter 4. Working With Informix Types 4-33

int setString(long, String) throws SQLException

int setString(long, String, int, int) throws SQLException

v You can use Informix extensions that are based on smart-large-object

support within IBM Informix Dynamic Server, which are described in this

section. This approach offers more options.

This section contains the following subsections:

v Smart Large Objects in the Database Server

v Smart Large Objects in a Client Application

v Steps for Creating Smart Large Objects

v Steps for Accessing Smart Large Objects

v Performing Operations on Smart Large Objects

v Working with Storage Characteristics

v Working with Status Characteristics

v Working with Locks

v Caching Large Objects

v Smart Large Object Examples

Smart Large Objects in the Database Server

In the Informix database server, a smart large object has two parts:

v The data, which is stored in an sbspace

v A large-object handle, known as an LO handle, which identifies the location of

the smart-large-object data in its sbspace

Suppose you store the picture of an employee as a smart large object.

Figure 4-1 shows how the LO handle contains information about the location

of the actual employee picture in the sbspace1_100 sbspace.

In Figure 4-1, the sbspace holds the actual employee image that the LO handle

identifies. For more information about the structure of an sbspace, and the

onspaces database utility that creates and drops sbspaces, see the

IBM Informix: Dynamic Server Administrator's Guide.

Figure 4-1. Smart Large Object in the Database Server

4-34 IBM Informix JDBC Driver Programmer’s Guide

Important: Smart large objects can only be stored in sbspaces. You must

create an sbspace before you attempt to insert smart large objects

into the database.

Because a smart large object is potentially very large, the database server

stores only its LO handle in a database table; it can then use this handle to

find the actual data of the smart large object in the sbspace. This arrangement

minimizes the table size.

Applications obtain the LO handle from the database and use it to locate the

smart-large-object data and to open the smart large object for read and write

operations.

Smart Large Objects in a Client Application

On the client, your JDBC application can use ResultSet methods to access

smart-large-object data, such as:

v getClob() and getAsciiStream() for CLOB data

v getBlob() and getBinaryStream() for BLOB data

v getString() for both CLOB and BLOB data

On the client side, the JDBC driver references the LO handle through an

IfxLocator object. Your JDBC application obtains an instance of the IfxLocator

class to contain the smart-large-object locator handle, as shown in Figure 4-2.

Your application creates a smart large object independently and then inserts

the smart large object into different columns, even in multiple tables. Using

multiple threads, an application can write or read data from various portions

of the smart large object in parallel, which is very efficient.

In IDS, support for Informix smart large object data types is available only

with 9.x and later versions of the database server.

Figure 4-2. Locating a Smart Large Object In a Client Application

Chapter 4. Working With Informix Types 4-35

Steps for Creating Smart Large Objects

The Informix smart large object implementation is based on the following

classes:

v IfxLobDescriptor stores attributes for the large object.

v IfxLocator contains the handle to the large object in the database server.

v IfxSmartBlob contains methods for working with the smart large object,

such as positioning within the object, reading data from the object, and

writing data to the object.

v IfxBblob and IfxCblob implement the java.sql.Blob and java.sql.Clob

interfaces from the Sun Microsystems JDBC 3.0 specification.

v IfxLoStat stores status information about the large object.

Tip: This section describes how to use the Informix smart-large-object

interface, but it does not currently document every method and

parameter in the interface. For a comprehensive reference to all the

methods in the interface and their parameters, see the javadoc files for

IBM Informix JDBC Driver, located in the doc/javadoc directory where

your driver is installed.

 To create a smart large object:

 1. For a new smart large object, ensure that the smart large object has an

sbspace specified for its data.

For detailed documentation on the onspaces utility that creates sbspaces,

see the IBM Informix: Dynamic Server Administrator's Guide. For an

example of creating an sbspace, see “Example of Setting sbspace

Characteristics” on page 4-51.

 2. Create an IfxLobDescriptor object.

This allows you to set storage characteristics for the smart large object.

The driver passes the IfxLobDescriptor object to the database server

when the IfxSmartBlob.IfxLoCreate() method creates the large object.

 3. If desired, call methods in the IfxLobDescriptor object to specify storage

characteristics.

For most smart large objects, the sbspace name is the only storage

characteristic that you need to specify. The database server can calculate

values for all other storage characteristics. You can set particular storage

characteristics to override these calculated values. However, most

applications do not need to set storage characteristics at this level of

detail. For more information, see “Working with Storage Characteristics”

on page 4-48.

 4. Create an IfxLocator object.

This is the pointer to the smart large object on the client.

 5. Create an IfxSmartBlob object.

4-36 IBM Informix JDBC Driver Programmer’s Guide

This lets you perform various common operations on the smart large

object.

 6. Execute the IfxSmartBlob.IfxLoCreate() method to create the large object

in the database server.

IfxLoCreate() takes the IfxLocator and IfxLobDescriptor objects as

parameters to identify the smart large object in the database server.

 7. Execute IfxSmartBlob.IfxLoWrite() to write data to the smart large object

in the database server.

 8. Execute additional IfxSmartBlob methods to position within the object,

read from the object, and so forth.

 9. Execute IfxSmartBlob.IfxLoClose() to close the large object.

10. Insert the smart large object into the database (see “Inserting a Smart

Large Object into a Column” on page 4-40).

11. Execute IfxSmartBlob.IfxLoRelease() to release the locator pointer.

Creating an IfxLobDescriptor Object: The IfxLobDescriptor class stores the

internal storage characteristics for a smart large object. Before you can create a

smart large object on the database server, you must create an

IfxLobDescriptor object, as follows:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

The conn parameter is a java.sql.Connection object. The IfxLobDescriptor()

constructor sets all the default values for the object.

For more information about the internal storage characteristics, see “Working

with Storage Characteristics” on page 4-48.

Creating an IfxLocator Object: The IfxLocator object (usually known as the

locator pointer or large object locator) identifies the location of the smart large

object, as shown in Figure 4-2 on page 4-35; the locator pointer is the

communication link between the database server and the client for a

particular large object. Before it creates a large object or opens a large object

for reading or writing, an application must create an IfxLocator object:

IfxLocator loPtr = new IfxLocator();

IfxLocator loPtr = new IfxLocator(Connection conn);

Use the second of these constructors to display localized error messages if an

exception is thrown. For more information, see “Support for Localized Error

Messages” on page 6-18.

Creating an IfxSmartBlob Object: To create a smart large object and obtain

access to the methods for performing operations on the object, call the

IfxSmartBlob constructor, passing a reference to the JDBC connection:

IfxSmartBlob smb = new IfxSmartBlob(myConn)

Chapter 4. Working With Informix Types 4-37

Once you have written all the methods that perform operations you need in

the smart large object, you can then use the IfxSmartBlob.IfxLoCreate()

method to create the large object in the database server and open it for access

within your application. The method signature is as follows:

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,

 IfxLocator loPtr) throws SQLException

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,

 IfxBblob blob)throws SQLException

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,

 IfxCblob clob throws SQLException

The return value is the locator handle, which you can use in subsequent read,

write, seek, and close methods (you can pass it as the locator file descriptor

(lofd) parameter to the methods that operate on open smart large objects; these

methods are described beginning with “Positioning Within a Smart Large

Object” on page 4-43).

The flag parameter is an integer value that specifies the access mode in which

the new smart large object is opened in the server. The access mode

determines which read and write operations are valid on the open smart large

object. If you do not specify a value, the object is opened in read-only mode.

Use the access mode flag values in the following table with the IfxLoCreate()

and IfxLoOpen() methods to open or create smart large objects with specific

access modes.

Access Mode Purpose

Flag Value in

IfxSmartBlob

Read only Allows read operations only LO_RDONLY

Write only Allows write operations only LO_WRONLY

Write/Append Appends data you write to the end of the smart

large object By itself, it is equivalent to

write-only mode followed by a seek to the end

of the smart large object. Read operations fail.

When you open a smart large object in

write/append mode only, the smart large object

is opened in write-only mode. Seek operations

move the seek position, but read operations to

the smart large object fail, and the seek position

remains unchanged from its position just before

the write. Write operations occur at the seek

position, and then the seek position is moved.

LO_APPEND

Read/Write Allows read and write operations LO_RDWR

The following example shows how to use a LO_RDWR flag value:

4-38 IBM Informix JDBC Driver Programmer’s Guide

IfxSmartBlob smb = new IfxSmartBlob(myConn);

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

The loDesc and loPtr objects are previously created IfxLobDescriptor and

IfxLocator objects, respectively.

The database server uses the following system defaults when it opens a smart

large object.

Open-Mode Information Default Open Mode

Access mode Read-only

Access method Random

Buffering Buffered access

Locking Whole-object locks

 For more information on locking, see “Working with Locks” on page 4-60.

The following table provides the full set of open-mode flags:

Open-Mode Flag Description

LO_APPEND Appends data you write to the end of the

smart large object

 By itself, it is equivalent to write-only mode

followed by a seek to the end of the smart

large object. Read operations fail.

 When you open a smart large object in

write/append mode only, the smart large

object is opened in write-only mode. Seek

operations move the seek position, but read

operations to the smart large object fail, and

the seek position remains unchanged from its

position just before the write. Write operations

occur at the seek position, and then the seek

position is moved.

LO_WRONLY Allows write operations only

LO_RDONLY Allows read operations only

LO_RDWR Allows read and write operations

LO_DIRTY_READ For open only

 Allows you to read uncommitted data pages

for the smart large object

Chapter 4. Working With Informix Types 4-39

You cannot write to a smart large object after

you set the mode to LO_DIRTY_READ. When

you set this flag, you reset the current

transaction isolation mode to Dirty Read for

the smart large object.

 Do not base updates on data that you obtain

from a smart large object in Dirty Read mode.

LO_RANDOM Overrides optimizer decision

 Indicates that I/O is random and that the

database server should not read ahead.

Default open mode.

LO_SEQUENTIAL Overrides optimizer decision

 Indicates that reads are sequential in either

forward or reverse direction.

LO_FORWARD Used only for sequential access to indicate

forward direction

LO_REVERSE Used only for sequential access to indicate

reverse direction

LO_BUFFER Use standard database server buffer pool.

LO_NOBUFFER Do not use the standard database server

buffer pool. Use private buffers from the

session pool of the database server.

LO_NODIRTY_READ Do not allow dirty reads on smart large object.

See LO_DIRTY_READ flag for more

information.

LO_LOCKALL Specifies that locking will occur on entire

smart large object

LO_LOCKRANGE Specifies that locking will occur for a range of

bytes

 You specify the range of bytes through the

IfxSmartBlob.IfxLoLock() method when you

place the lock.

Inserting a Smart Large Object into a Column: After creating a smart large

object, you must insert it into a BLOB or CLOB column to save it in the

database. To do this, you must convert the IfxLocator object to an IfxBblob or

IfxCblob object, depending upon the column type.

 To insert a smart large object into a BLOB or CLOB column:

4-40 IBM Informix JDBC Driver Programmer’s Guide

1. Create an IfxBblob or IfxCblob object, as follows:

IfxBblob blb = new IfxBblob(loPtr);

The loPtr parameter is an IfxLocator object obtained from one of the

previous sets of steps.

2. Use the PreparedStatement.setBlob() or setClob() method to insert the

object into the column.

Important: The sbspace for the smart large object must exist in the database

server before the insertion executes.

Steps for Accessing Smart Large Objects

Follow these steps to use the Informix extensions to select a smart large object

from a database column.

 To access a smart large object:

1. Cast the java.sql.Blob or java.sql.Clob object to an IfxBblob or IfxCblob

object.

2. Use the IfxBblob.getLocator() or IfxCblob.getLocator() method to extract

an IfxLocator object.

3. Create an IfxSmartBlob object.

4. Use the IfxSmartBlob.IfxLoOpen() method to open the smart large object.

5. Use the IfxSmartBlob.IfxLoRead() method to read the data from the smart

large object.

6. Close the smart large object using the IfxSmartBlob.IfxLoClose() method.

7. Release the locator pointer in the server by calling the

IfxSmartBlob.IfxLoRelease() method.

Standard JDBC ResultSet methods such as ResultSet.getBinaryStream(),

getAsciiStream(), getString(), getBytes(), getBlob(), and getClob() can fetch

BLOB or CLOB data from a table. The Informix extension classes can then

access the data.

Performing Operations on Smart Large Objects

In the database server, you can store a smart large object directly in a column

that has one of the following data types:

v The CLOB data type holds text data.

v The BLOB data type can store any kind of binary data in an

undifferentiated byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object.

Therefore, when you select a CLOB or BLOB column, you do not obtain the

actual data of the smart large object, but the LO handle that identifies this

Chapter 4. Working With Informix Types 4-41

data. Columns for smart large objects have a theoretical limit of 4 terabytes

and a practical limit determined by your disk capacity.

You can use either of the following ways to store a smart large object in a

column:

v For direct access to the smart large object, create a column of the CLOB or

BLOB data type.

v To hide the smart large object within an atomic data type, create an opaque

type that holds a smart large object.

In a client application, the IfxBblob and IfxCblob classes are bridges between

the way of handling smart large object data described in the Sun Microsystem

JDBC 3.0 specification and the Informix extensions. The IfxBblob class

implements the java.sql.Blob interface, and the IfxCblob class implements the

java.sql.Clob interface. The Informix extensions require an IfxLocator object to

identify the smart large object in the database server.

When you query a table containing a column of type BLOB or CLOB, an

object of type Blob or Clob is returned, depending upon the column type. You

can then use the JDBC 3.0 supporting methods for objects of type Blob or

Clob to access the smart large object.

The constructors create an IfxBblob or IfxCblob object from the IfxLocator

object loPtr:

public IfxBblob(IfxLocator loPtr)

public IfxCblob(IfxLocator loPtr)

The following locator method returns an IfxLocator object from an IfxBblob

or IfxCblob object. You can then open, read, and write to the smart large

object using the IfxSmartBlob.IfxLoOpen(), IfxLoRead(), and IfxLoWrite()

methods:

public IfxLocator getLocator() throws SQLException

Opening a Smart Large Object

The following methods in the IfxSmartBlob class open an existing smart large

object in the database server:

public int IfxLoOpen(IfxLocator loPtr, int flag) throws

 SQLException

public int IfxLoOpen(IfxBblob blob, int flag) throws SQLException

public int IfxLoOpen(IfxCblob clob, int flag) throws SQLException

The first version opens the smart large object that is referenced by the locator

pointer loPtr. The second and third versions open the smart large objects that

are referenced by the specified IfxBblob and IfxCblob objects, respectively.

The flag parameter is a value from the table in “Creating an IfxSmartBlob

Object” on page 4-37.

4-42 IBM Informix JDBC Driver Programmer’s Guide

Positioning Within a Smart Large Object

The IfxLoTell() method in the IfxSmartBlob class returns the current seek

position, which is the offset for the next read or write operation on the smart

large object. The IfxLoSeek() method in the IfxSmartBlob class sets the read

or write position within an already opened large object.

public long IfxLoTell(int lofd)

public long IfxLoSeek(int lofd, long offset, int whence) throws

 SQLException

The absolute position depends on the value of the second parameter, offset,

and the value of the third parameter, whence.

The lofd parameter is the locator file descriptor returned by the IfxLoCreate()

or IfxLoOpen() method. The offset parameter is an offset from the starting

seek position.

The whence parameter identifies the starting seek position. Use the whence

values in the following table to define the position within a smart large object

to start a seek operation.

Starting Seek Position Whence Value

Beginning of the smart

large object IfxSmartBlob.LO_SEEK_SET

Current location in the smart

large object IfxSmartBlob.LO_SEEK_CUR

End of the smart large object IfxSmartBlob.LO_SEEK_END

 The return value is a long integer representing the absolute position within

the smart large object.

The following example shows how to use a LO_SEEK_SET whence value:

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob(myConn);

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

int n = smb.IfxLoWrite(loFd, fin, fileLength);

smb.IfxLoClose(loFd);

loFd = smb.IfxLoOpen(loPtr, smb.LO_RDWR);

long m = smb.IfxLoSeek(loFd, 200, smb.LO_SEEK_SET);

The writing position is set at an offset of 200 bytes from the beginning of the

smart large object.

Reading from a Smart Large Object

You can read data from a smart large object in the following ways:

v Read the data from the object into a byte[] buffer.

Chapter 4. Working With Informix Types 4-43

v Read the data from the object into a file output stream.

v Read the data from the object into a file.

Use the IfxLoRead() method in the IfxSmartBlob class, which has the

following signatures, to read from a smart large object into a buffer or file

output stream:

public byte[] IfxLoRead(int lofd, int nbytes) throws SQLException

public int IfxLoRead(int lofd, byte[] buffer, int nbytes) throws

 SQLException

public int IfxLoRead(int lofd, FileOutputStream fout, int nbytes

 throws SQLException

public int IfxLoRead(int lofd, byte[] buffer, int nbytes, int

 offset throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method.

The first version returns nbytes bytes of data into a byte buffer. This version of

the method allocates the memory for the buffer. The second version reads

nbytes bytes of data into an already allocated buffer. The third version reads

nbytes bytes of data into a file output stream. The fourth version reads nbytes

bytes of data into a byte buffer starting at the current seek position plus offset

into the smart large object. The return values for the last three versions

indicate the number of bytes read.

Use the IfxLoToFile() method in the IfxSmartBlob class, which has the

following signatures, to read from a smart large object into a file:

public int IfxLoToFile(IfxLocator loPtr, String filename, int flag

 , int whence) throws SQLException

public int IfxLoToFile(IfxBblob blob, String filename, int flag ,

 int whence) throws SQLException

public int IfxLoToFile(IfxCblob clob, String filename, int flag ,

 int whence) throws SQLException

The first version reads the smart large object that is referenced by the locator

pointer loPtr. The second and third versions read the smart large objects that

are referenced by the specified IfxBblob and IfxCblob objects, respectively.

The flag parameter indicates whether the file is on the client or the server. The

value is either IfxSmartBlob.LO_CLIENT_FILE or IfxSmartBlob.LO_SERVER_FILE.

The whence parameter identifies the starting seek position. For the values, see

“Positioning Within a Smart Large Object” on page 4-43.

Tip: There has been a change in the signature of the following function:

 IfxSmartBlob.IfxLoToFile().

4-44 IBM Informix JDBC Driver Programmer’s Guide

This function used to accept four parameters, but now only accepts three

parameters. All three overloaded functions for IfxLoToFile() accept three

parameters.

Writing to a Smart Large Object

You can write data to a smart large object in the following ways:

v Write the data from a byte[] buffer to the object.

v Write the data from a file input stream to the object.

v Write the data from a file to the object.

Use the IfxLoWrite() methods in the IfxSmartBlob class to write to a smart

large object from a byte[] buffer or file input stream:

public int IfxLoWrite(int lofd, byte[] buffer) throws SQLException

public int IfxLoWrite(int lofd, InputStream fin, int length)

 throws SQLException

The first version of the method writes buffer.length bytes of data from the

buffer into the smart large object. The second version writes length bytes of

data from an InputStream object into the smart large object.

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method. The buffer parameter is the byte[] buffer where the data

is read. The fin parameter is the InputStream object from which data is

written into the smart large object. The length parameter is the number of

bytes written into the smart large object. The driver returns the number of

bytes written.

Use the IfxLoFromFile() method in the IfxSmartBlob class to write data to a

smart large object from a file:

public int IfxLoFromFile (int lofd, String filename, int flag, int

 offset, int amount) throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method. The flag parameter indicates whether the file is on the

client or the server. The value is either IfxSmartBlob.LO_CLIENT_FILE or

IfxSmartBlob.LO_SERVER_FILE.

The driver returns the number of bytes written.

Truncating a Smart Large Object

Use the IfxLoTruncate() method in the IfxSmartBlob class to truncate a large

object at an offset you specify. The method signature is as follows:

public void IfxLoTruncate(int lofd, long offset) throws

 SQLException

Chapter 4. Working With Informix Types 4-45

The offset parameter is the absolute position at which the smart large object is

truncated.

Measuring a Smart Large Object

Use the IfxLoSize() method in the IfxSmartBlob class to return the size of a

smart large object. This method returns a long integer representing the size of

the large object.

The method signature is as follows:

public long IfxLoSize(int lofd) throws SQLException

Closing and Releasing a Smart Large Object

After you have performed all the operations your application needs, you must

close the object and then release the resources in the server. The methods in

the IfxSmartBlob class that perform these tasks are as follows:

public void IfxLoClose(int lofd) throws SQLException

public void IfxLoRelease(IfxLocator loPtr) throws SQLException

public void IfxLoRelease(IfxBblob blob) throws SQLException

public void IfxLoRelease(IfxCblob clob) throws SQLException

For any further access to the same large object, you must reopen it with the

IfxLoOpen() method.

Converting IfxLocator to a Hexadecimal String

Some applications, for example, Web browsers, can only process ASCII data;

they require IfxLocator to be converted to hexadecimal string format. In a

typical Web-based application, the Web server queries the database table and

sends the results to the browser. Instead of sending the entire smart large

object, the Web server converts the locator into hexadecimal string format and

sends it to the browser. If the user requests the browser to display the smart

large object, the browser sends the locator in hexadecimal format back to the

Web server. The Web server then reconstructs the binary locator from the

hexadecimal string and sends the corresponding smart large object data to the

browser.

To convert between the IfxLocator byte array and a hexadecimal number, use

the methods listed in the following table.

4-46 IBM Informix JDBC Driver Programmer’s Guide

Task Performed Method Signature Notes

Converts a byte array

to a hexadecimal

character string

public static String toHexString(byte[]

byteBuf);

Works on data other than

IfxLocator Provided in the

com.informix.util.stringUtil class

Converts a

hexadecimal character

string to a byte array

public static byte[] fromHexString(String

str) throws NumberFormatException;

Works on data other than

IfxLocator Provided in the

com.informix.util.stringUtil class

Constructs an

IfxLocator object using

a byte array

public IfxLocator(byte[] byteBuf) throws

SQLException;

Provided in the IfxLocator class

Converts an IfxLocator

byte array to a

hexadecimal character

string

public String toString(); Provided in the IfxLocator class

Converts a

hexadecimal character

string to an IfxLocator

byte array

public byte[] toBytes(); Provided in the IfxLocator class

The following example uses the toString() and toBytes() methods to fetch the

locator from a smart large object and then convert it into a hexadecimal string:

...

String hexLoc = "";

byte[] blobBytes;

byte[] rawLocA = null;

IfxLocator loc;

try

{

 ResultSet rs = stmt.executeQuery("select b1 from btab");

 while(rs.next())

 {

 IfxBblob b=(IfxBblob)rs.getBlob(1);

 loc =b.getLocator();

 hexLoc = loc.toString();

 rawLocA = loc.toBytes();

 }

}

catch(SQLException e)

{}

The following example uses the IfxLocator() method to construct an

IfxLocator, which is then used to read a smart large object:

...

try

{

Chapter 4. Working With Informix Types 4-47

IfxLocator loc2 = new IfxLocator(rawLoc);

 IfxSmartBlob b2 = new IfxSmartBlob((IfxConnection)myConn);

 int lofd = b2.IfxLoOpen(loc2, b2.LO_RDWR);

 blobBytes = b2.IfxLoRead(lofd, fileLength);

}

catch(SQLException e)

 {}

Working with Storage Characteristics

Storage characteristics tell the database server how to manage a smart large

object. These characteristics include such areas as sizing, logging, locking, and

open modes. You have the following options with respect to storage

characteristics:

v Use the system-specified storage characteristics as a basis for obtaining the

storage characteristics of a smart large object.

v Override the system defaults with one of the following:

– Storage characteristics defined for a particular CLOB or BLOB column in

which you want to store the smart large object

– Storage characteristics that are unique to a particular CLOB or BLOB

column called column-level storage characteristics

– Special storage characteristics that you define for this smart large object

only called user-specified storage characteristics

The database server uses a hierarchy, which Figure 4-3 shows, to obtain the

storage characteristics for a new smart large object.

4-48 IBM Informix JDBC Driver Programmer’s Guide

For a given storage characteristic, any value defined at the column level

overrides the system-specified value, and any user-level value overrides the

column-level value. You can specify storage characteristics at the three points

shown in the following table.

 When Specified How Specified For More Information

When an

sbspace is

created

Options of onspaces utility “Using System-Specified Storage

Characteristics”

IBM Informix: Dynamic Server

Administrator's Guide

When a

database table is

created

Keywords in PUT clause of

CREATE TABLE statement

IBM Informix: Guide to SQL Syntax

When a smart

large object is

created

Create flags and methods in the

ifxLobDescriptor class

“Setting Create Flags” on page

4-58

Using System-Specified Storage Characteristics

The database administrator establishes system-specified storage characteristics

when he or she initializes the database server and creates an sbspace with the

onspaces utility, as follows:

v If the onspaces utility has specified a value for a particular storage

characteristic, the database server uses the onspaces value as the

system-specified storage characteristic.

Figure 4-3. Storage-Characteristics Hierarchy

Chapter 4. Working With Informix Types 4-49

v If the onspaces utility has not specified a value for a particular storage

characteristic, the database server uses the system default as the

system-specified storage characteristic.

The system-specified storage characteristics apply to all smart large objects

that are stored in the sbspace, unless a smart large object specifically overrides

them with column-level or user-specified storage characteristics.

For the storage characteristics that onspaces can set, as well as the system

defaults, see Table 4-2 on page 4-53 and Table 4-3 on page 4-54.

For most applications, it is recommended that you use the system-specified

default values for the storage characteristics. Note the following exceptions:

v Your application needs to obtain extra performance.

You can use setXXX() methods in ifxLobDescriptor to change the

disk-storage information of a new smart large object. For more information,

see “Setting Create Flags” on page 4-58.

v You want to use the storage characteristics of an existing smart large object.

The IfxLoStat.getLobDescriptor() method can obtain the large-object

descriptor of an open smart large object. You can then create a new object

and use the IfxSmartBlob.ifxLoAlter() method to set its characteristics to

the new descriptor. For more information, see “Changing the Storage

Characteristics” on page 4-57.

v You are working with more than one smart large object and do not want to

use the default sbspace.

The DBA can specify a default sbspace name with the SBSPACENAME

configuration parameter in the ONCONFIG file. However, you must ensure

that the location (the name of the sbspace) is correct for the smart large

object that you create. If you do not specify an sbspace name for a new

smart large object, the database server stores it in this default sbspace. This

arrangement can lead to space constraints.

v If you know the size of the smart large object, specify this size in your

application using the IfxLobDescriptor.setEstBytes() method instead of in

the onspaces utility (system level) or the CREATE TABLE or the ALTER

TABLE statement (column level).

Obtaining Information About Storage Characteristics: To obtain the

column-level storage characteristics of a smart large object, your application

can call the following method in the IfxSmartBlob class, passing the name of

the column for the colname parameter:

IfxLobDescriptor IfxLoColInfo(java.lang.String colname) throws

 SQLException

4-50 IBM Informix JDBC Driver Programmer’s Guide

Most applications only need to ensure correct storage characteristics for an

sbspace name (the location of the smart large object). You can get information

for this and other storage characteristics by calling the various getXXX()

methods in the ifxLobDescriptor class before creating the IfxSmartBlob

object. The following table summarizes the getXXX() methods.

Method Signature in

ifxLobDescriptor Purpose

int getCreateFlags() Obtains the create flags for the object

long getEstSize() Obtains the estimated size, in bytes, of the

object

int getExtSize() Obtains the extent size of the object

long getMaxBytes() Obtains the maximum size, in bytes, of the

object

java.lang.String getSbspace() Obtains the name of the sbspace in the

database server in which the object is stored

Example of Setting sbspace Characteristics: The following call to the

onspaces utility creates an sbspace called sb1 in the /dev/sbspace1 partition:

onspaces -c -S sb1 -p /dev/sbspace1 -o 500 -s 2000

 -Df "AVG_LO_SIZE=32"

Table 4-1 shows the resulting system-specified storage characteristics for all

smart large objects in the sb1 sbspace.

 Table 4-1. System-Specified Storage Characteristics for the sb1 Sbspace

Disk-Storage Information System-Specified Value

Specified by

onspaces Utility

Size of extent Calculated by database server System default

Size of next extent Calculated by database server System default

Minimum extent size Calculated by database server System default

Size of smart large object 32 kilobytes

(database server uses as size

estimate)

AVG_LO_SIZE

Maximum size of I/O block Calculated by database server System default

Name of sbspace sb1 -S option

Logging OFF System default

Last-access time OFF System default

Chapter 4. Working With Informix Types 4-51

Working with Disk-Storage Information

Disk-storage information helps the database server determine how to manage

the smart large object most efficiently on disk.

Important: For most applications, use the values that the database server

calculates for the disk-storage information. Methods provided in

IBM Informix JDBC Driver are intended for special situations.

This disk-storage information includes:

v Allocation-extent information:

– Extent size:

An allocation extent is a collection of contiguous bytes within an sbspace

that the database server allocates to a smart large object at one time. The

database server performs storage allocations for smart large objects in

increments of the extent size.

You can specify an extent size by calling the

ifxLobDescriptor.setExtSize() method.

– Next-extent size:

The database server tries to allocate an extent as a single, contiguous

region in a chunk. However, if no single extent is large enough, the

database server must use multiple extents as necessary to satisfy the

current write request. After the initial extent fills, the database server

attempts to allocate another extent of contiguous disk space. This process

is called next-extent allocation.

For more information on extents, see the chapter on disk structure and

storage in the IBM Informix: Dynamic Server Administrator's Guide.

v Sizing information:

– Estimated number of bytes in a new smart large object

– Maximum number of bytes to which the smart large object can grow

To specify sizing information, you can use the setMaxBytes() and

setEstBytes() methods in the ifxLobDescriptor class.

If you know the size of the smart large object, specify this size using the

setEstBytes() method. This is the best way to set the extent size because the

database server can allocate the entire smart large object as one extent.

v Location:

The name of the sbspace identifies the location at which to store the smart

large object. To set this name, you can use the

vifxLobDescriptor.setSbSpace() method.

The database server uses the disk-storage information to determine how best

to size, allocate, and manage the extents of the sbspace. It can calculate all

disk-storage information for a smart large object except the sbspace name.

4-52 IBM Informix JDBC Driver Programmer’s Guide

Table 4-2 summarizes the ways to specify disk-storage information for a smart

large object.

 Table 4-2. Specifying Disk-Storage Information

Disk-Storage

Information

System-Specified Storage

Characteristics

Column-Level

Storage

Characteristics

User-Specified

Storage

Characteristics

System Default

Value

Specified by

onspaces Utility

Specified by

PUT clause of

CREATE TABLE

Specified by an

IBM Informix

JDBC Driver

Method

Size of extent Calculated by

database server

EXTENT_SIZE EXTENT SIZE Yes

Size of next extent Calculated by

database server

NEXT_SIZE No No

Minimum extent size 4 kilobytes MIN_EXT_SIZE No No

Size of smart large

object

Calculated by

database server

Average size of all

smart large objects

in sbspace:

AVG_LO_SIZE

No Estimated size of

a particular

smart large object

Maximum size of

a particular

smart large object

Maximum size of I/O

block

Calculated by

database server

MAX_IO_SIZE No No

Name of sbspace SBSPACENAME -S option Name of an

existing sbspace

in which a smart

large object: IN

clause

Yes

Working with Logging, Last-Access Time, and Data Integrity

Database administrators and applications can affect some additional

smart-large-object attributes:

v Whether to log changes to the smart large object in the system log file

v Whether to save the last-access time for a smart large object

v How to format the pages in the sbspace of the smart large object

Table 4-3 summarizes how you can alter these attributes at the system,

column, and application levels.

Chapter 4. Working With Informix Types 4-53

Table 4-3.

Specifying Attribute Information

Attribute

Information

System-Specified Storage

Characteristics

Column-Level Storage

Characteristics

User-Specified

Storage

Characteristics

System

Default Value

Specified by

onspaces Utility

Specified by PUT

clause of CREATE

TABLE

Specified by a

JDBC Driver

Method

Logging OFF LOGGING LOG, NO LOG Yes

Last-access time OFF ACCESSTIME KEEP ACCESS TIME,

NO KEEP ACCESS

TIME

Yes

Buffering mode OFF BUFFERING No No

Lock mode Lock entire

smart large

object

LOCK_MODE No Yes

Data integrity High integrity No HIGH INTEG,

MODERATE INTEG

Yes

The following sections provide more information about these attributes.

Logging: By default, the database server does not log the user data of a

smart large object. You can control the logging behavior for a smart large

object as part of its create flags. For more information, see “Setting Create

Flags” on page 4-58.

When a database performs logging, smart large objects might result in long

transactions for the following reasons:

v Smart large objects can be very large, even several gigabytes in size.

The amount of log storage needed to log user data can easily overflow the

log.

v Smart large objects might be used in situations where data collection can be

quite long.

For example, if a smart large object holds low-quality audio recording, the

amount of data collection might be modest but the recording session might

be quite long.

A simple workaround is to divide a long transaction into multiple smaller

transactions. However, if this solution is not acceptable, you can control when

the database server performs logging of smart large objects. (Table 4-3 on page

4-54 shows how you can control the logging behavior for a smart large

object.)

4-54 IBM Informix JDBC Driver Programmer’s Guide

When logging is enabled, the database server logs changes to the user data of

a smart large object. It performs this logging in accordance with the current

database log mode.

For a database that is not ANSI compliant, the database server does not

guarantee that log records that pertain to smart large object are flushed at

transaction commit. However, the metadata is always restorable to an

action-consistent state; that is, to a state that ensures no structural

inconsistencies exist in the metadata (control information of the smart large

object, such as reference counts).

American National Standards Institute

 An ANSI-compliant database uses unbuffered logging. When

smart-large-object logging is enabled, all log records (metadata and user data)

that pertain to smart large objects are flushed to the log at transaction commit.

However, user data is not guaranteed to be flushed to its stable storage

location at commit time.

End of American National Standards Institute

 When logging is disabled, the database server does not log changes to user

data even if the database server logs other database changes. However, the

database server always logs changes to the metadata. Therefore, the database

server can still restore the metadata to an action-consistent state.

Important: Consider carefully whether to enable logging for a smart large

object. The database server incurs considerable overhead to log

smart large objects. You must also ensure that the system log file

is large enough to hold the value of the smart large object. The

logical log size must exceed the total amount of data that the

database server logs while the update transaction is active.

Write your application so that any transactions with smart large objects that

have potentially long updates do not cause other transactions to wait.

Multiple transactions can access the same smart-large-object instance if the

following conditions are satisfied:

v The transaction can access the database row that contains an LO handle for

the smart large object.

Multiple references can exist on the same smart large object if more than

one column holds an LO handle for the same smart large object.

v Another transaction does not hold a conflicting lock on the smart large

object.

For more information on smart large object locks, see “Working with Locks”

on page 4-60.

Chapter 4. Working With Informix Types 4-55

The best update performance and fewest logical-log problems result when you

disable the logging feature when you load a smart large object and re-enable

it after the load operation completes. If logging is turned on, you might want

to turn logging off before a bulk load and then perform a level-0 backup.

Last-Access Time: The last-access time of a smart large object is the system

time at which the database server last read or wrote the smart large object.

The last-access time records access to the user data and metadata of a smart

large object. This system time is stored as number of seconds since January 1,

1970. The database server stores this last-access time in the metadata area of

the sbspace.

By default, the database server does not save the last access time. You can

specify saving the last-access time by setting the

LO_KEEP_LASTACCESS_TIME create flag and calling the

IfxLobDescriptor.setCreateFlags() method. For more information, see “Setting

Create Flags” on page 4-58.

The database server also tracks the last-modification time and the last change

in status for a smart large object. For more information, see “Working with

Status Characteristics” on page 4-59.

Important: Consider carefully whether to track last-access time for a smart

large object. The database server incurs considerable overhead in

logging and concurrency to maintain last-access times for smart

large objects.

Data Integrity: You can specify data integrity with the LO_HIGH_INTEG

and LO_MODERATE_INTEG create flags, by calling the

IfxLobDescriptor.setCreateFlags() method. For more information, see “Setting

Create Flags” on page 4-58.

An sbpage is the unit of allocation for smart large object data, which is stored

in the user-data area of an sbspace. The structure of an sbpage in the sbspace

determines how much data integrity the database server can provide. The

database server uses the page header and trailer to detect incomplete writes

and data corruption.

The database server supports the following levels of data integrity:

v High integrity tells the database server to use both a page header and a

page trailer in each sbpage.

v Moderate integrity tells the database server to use only a page header in

each sbpage.

Moderate integrity provides the following benefits:

4-56 IBM Informix JDBC Driver Programmer’s Guide

v It eliminates an additional data copy operation that is necessary when an

sbpage has page headers and page trailers.

v It preserves the user data alignments on pages because no page header and

page trailer are present.

Moderate integrity might be useful for smart large objects that contain large

amounts of audio or video data that is moved through the database server

and that do not require a high data integrity. By default, the database server

uses high integrity (page headers and page trailers) for sbspace pages. You

can control the data integrity for a smart large object as part of its storage

characteristics.

Important: Consider carefully whether to use moderate integrity for sbpages

of a smart large object. Although moderate integrity takes less

disk space per page, it also reduces the ability of the database

server to recover information if disk errors occur.

For information on the structure of sbspace pages, see the IBM Informix:

Dynamic Server Administrator's Guide.

Changing the Storage Characteristics

The IfxLoAlter() methods in the IfxSmartBlob class let you change the

storage characteristics of a smart large object.

 To change smart-large-object characteristics:

1. Create a new large-object descriptor. For example:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

2. Call IfxLobDescriptor.setCreateFlags(), setEstBytes(),

IfxLobDescriptor.setMaxBytes(), setExtSize, and setSbspace() to specify

the new characteristics:

public void setCreateFlags(int flags)

public void setEstBytes(long estSize)

public void setMaxBytes (long maxSize)

public void setExtSize (long extSize)

public void setSbspace(java.lang.String sbspacename)

The flag parameter is a constant from “Setting Create Flags” on page 4-58,

next.

3. Call IfxLoAlter() to alter the existing smart large object to contain the new

descriptor:

public int IfxLoAlter(IfxLocator loPtr, IfxLobDescriptor loDesc)

 throws SQLException

public int IfxLoAlter(IfxBblob blob, IfxLobDescriptor loDesc) throws SQLException

public int IfxLoAlter(IfxCblob clob, IfxLobDescriptor loDesc) throws SQLException

Chapter 4. Working With Informix Types 4-57

IfxLoAlter() obtains an exclusive lock in the server for the entire smart large

object before it proceeds with the update. It holds this lock until the update

completes.

Setting Create Flags: You can change the following characteristics by calling

the IfxLobDescriptor.setCreateFlags() method:

v Logging characteristics

You can specify the LO_LOG or LO_ NOLOG constant.

LO_LOG causes the server to follow the logging procedure used with the

current database log for the corresponding smart large object. This option

can generate large amounts of log traffic and increase the risk that the

logical log fills up.

Instead of full logging, you might turn off logging when you load the smart

large object initially and then turn logging back on once the smart large

object is loaded. If you use NO LOG, you can restore the smart-large-object

metadata later to a state in which no structural inconsistencies exist. In

most cases, no transaction inconsistencies will exist either, but that result is

not guaranteed.

For more usage details on logging, see “Logging” on page 4-54.

v Last-access time characteristics

You can specify the LO_ KEEP_LASTACCESS_TIME or LO

NOKEEP_LASTACCESS_TIME constant. LO_ KEEP_LASTACCESS_TIME

records, in the smart-large-object metadata, the system time at which the

corresponding smart large object was last read or written.

For more usage details on last-access time, see “Last-Access Time” on page

4-56.

v Whether to detect incomplete writes and data corruption by producing

user-data pages with a page header and page trailer

You can specify the LO_ HIGH_INTEG or LO_moderate_integ constant.

LO_ HIGH_INTEG is the default data-integrity behavior.

For more usage details on data integrity, see “Data Integrity” on page 4-56.

The following example sets multiple flags:

loDesc.setCreateFlags

 (IfxSmartBlob.LO_LOG+IfxSmartBlob.LO_TEMP+...)

A parallel getXXX() method lets you obtain the current storage characteristics

for the large object:

public int getCreateFlags()

For more detailed information on all of the characteristics, see the section

describing the PUT clause for the CREATE TABLE statement, in the

IBM Informix: Guide to SQL Syntax.

4-58 IBM Informix JDBC Driver Programmer’s Guide

Working with Status Characteristics

The IfxLoStat class stores some statistical information about a smart large

object such as the size, last access time, last modified time, last status change,

and so on. Figure 4-4 shows the status information that you can obtain.

 To obtain a reference to the status structure, call the following method in the

IfxSmartBlob class:

IfxLoStat IfxLoGetStat(int lofd)

To obtain particular categories of status information, call the methods shown

in Figure 4-5.

Status Information Description

Last-access time The time, in seconds, that the smart large object was last accessed

 This value is available only if the last-access time attribute is enabled

for the smart large object. For more information, see “Last-Access

Time” on page 4-56.

Last-change time The time, in seconds, of the last change in status for the smart large

object

 A change in status includes changes to metadata and user data (data

updates and changes to the number of references). This system time

is stored as number of seconds since January 1, 1970.

Last-modification time The time, in seconds, that the smart large object was last modified

 A modification includes only changes to user data (data updates).

This system time is stored as the number of seconds since January 1,

1970.

 On some platforms, the last-modification time might also have a

microseconds component, which can be obtained separately from the

seconds component.

Size The size, in bytes, of the smart large object

Storage characteristics See “Working with Storage Characteristics” on page 4-48.

Figure 4-4. Status Information for a Smart Large Object

Chapter 4. Working With Informix Types 4-59

Working with Locks

To prevent simultaneous access to smart-large-object data, the database server

obtains a lock on this data when you open the smart large object. This

smart-large-object lock is distinct from the following kinds of locks:

v Row locks

A lock on a smart large object does not lock the row in which the smart

large object resides. However, if you retrieve a smart large object from a

row and the row is still current, the database server might hold a row lock

as well as a smart-large-object lock. Locks are held on the smart large object

instead of on the row because many columns could be accessing the same

smart-large-object data.

v Locks of different smart large objects in the same row of a table

A lock on one smart large object does not affect other smart large objects in

the row.

Table 4-4 shows the lock modes that a smart large object can support.

 Table 4-4. Lock Modes for a Smart Large Object

Lock Mode Purpose Description

Lock-all Lock the entire smart

large object

Indicates that lock requests apply to all

data for the smart large object

Byte-range Lock only specified

portions of the smart

large object

Indicates that lock requests apply only to

the specified number of bytes of

smart-large-object data

When the server opens a smart large object, it uses the following information

to determine the lock mode of the smart large object:

v The access mode of the smart large object

The database server obtains a lock as follows:

Status Information Method Signature in ifxLoStat Class

Last-access time int getLastAccessTime()

Last-change time int getLastStatusTime()

Last-modification time int getLastModifyTimeM() - time in microseconds

 int getLastModifyTimeS() - time rounded to seconds

Size int getSize()

Storage characteristics ifxLobDescriptor getLobDescriptor()

Figure 4-5. Methods for Obtaining Status Information

4-60 IBM Informix JDBC Driver Programmer’s Guide

– In share mode, when you open a smart large object for reading (read-only)

– In update mode, when you open a smart large object for writing

(write-only, read/write, write/append)

When a write operation (or some other update) is actually performed on

the smart large object, the server upgrades this lock to an exclusive lock.
v The isolation level of the current transaction

If the database table has an isolation mode of Repeatable Read, the server

does not release any locks that it obtains on a smart large object until the

end of the transaction.

By default, the server chooses the lock-all lock mode.

The server retains the lock as follows:

v It holds share-mode locks and update locks (which have not yet been

upgraded to exclusive locks) until one of the following events occurs:

– The close of the smart large object

– The end of the transaction

– An explicit request to release the lock (for a byte-range lock only)
v It holds exclusive locks until the end of the transaction even if you close the

smart large object.

When one of the preceding conditions occurs, the server releases the lock on

the smart large object.

Important: You lose the lock at the end of a transaction even if the smart

large object remains open. When the server detects that a smart

large object has no active lock, it automatically obtains a new lock

when the first access occurs to the smart large object. The lock

that it obtains is based on the original access mode of the smart

large object.

The server releases the lock when the current transaction terminates.

However, the server obtains the lock again when the next function that needs

a lock executes. If this behavior is undesirable, the server-side SQL application

can use BEGIN WORK transaction blocks and place a COMMIT WORK or

ROLLBACK WORK statement after the last statement that needs to use the

lock.

Using Byte-Range Locking

By default, the database server uses whole lock-all locks when it needs to lock

a smart large object. Lock-all locks are an “all or nothing” lock; that is, they

lock the entire smart large object. When the database server obtains an

exclusive lock, no other user can access the data of the smart large object as

long as the lock is held.

Chapter 4. Working With Informix Types 4-61

If this locking is too restrictive for the concurrency requirements of your

application, you can use byte-range locking instead of lock-all locking. With

byte-range locking, you can specify the range of bytes to lock in the

smart-large-object data. If other users access other portions of the data, they

can still acquire their own byte-range lock.

Use the IfxLoLock() method in the IfxSmartBlob class to specify byte-range

locking:

public long IfxLoLock(int lofd, long offset, int whence, long

 range, int lockmode) throws SQLException

To unlock a range of bytes in the object, use the IfxLoUnLock() method:

public long IfxLoUnLock(int lofd, long offset, int whence, long

 range) throws SQLException

The lofd parameter is the locator file descriptor returned by the IfxLoCreate()

or IfxLoOpen() method. The offset parameter is an offset from the starting

seek position. The whence parameter identifies the starting seek position. The

values are described in the table in “Positioning Within a Smart Large Object”

on page 4-43.

The range parameter indicates the number of bytes to lock or unlock within

the smart large object. The lockmode parameter indicates what type of lock to

create. The values can be either IfxSmartBlob.LO_EXCLUSIVE_MODE or

IfxSmartBlob.LO_SHARED_MODE.

Caching Large Objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the

database server, the data is cached in client memory. If the size of the large

object is bigger than the value in the LOBCACHE environment variable, the

large object data is stored in a temporary file. For more information about the

LOBCACHE variable, see “Managing Memory for Large Objects” on page 7-2.

Smart Large Object Examples

The examples on the following pages illustrate some of the tasks discussed in

this section.

Creating a Smart Large Object

This example illustrates the steps shown in “Steps for Creating Smart Large

Objects” on page 4-36.

file = new File("data.dat");

FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);

IfxLocator loPtr = new IfxLocator();

4-62 IBM Informix JDBC Driver Programmer’s Guide

IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Now create the large object in server. Read the data from the

 file

// data.dat and write to the large object.

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

System.out.println("A smart-blob is created ");

int n = fin.read(buffer);

if (n > 0)

n = smb.IfxLoWrite(loFd, buffer);

System.out.println("Wrote: " + n +" bytes into it");

// Close the large object and release the locator.

smb.IfxLoClose(loFd);

System.out.println("Smart-blob is closed ");

smb.IfxLoRelease(loPtr);

System.out.println("Smart Blob Locator is released ");

The contents of the file data.dat are written to the smart large object.

Inserting Data into a Smart Large Object

The following code inserts data into a smart large object:

String s = "insert into large_tab (col1, col2) values (?,?)";

pstmt = myConn.prepareStatement(s);

file = new File("data.dat");

FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Create a smart large object in server

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

System.out.println("A smart-blob has been created ");

int n = fin.read(buffer);

if (n > 0)

n = smb.IfxLoWrite(loFd, buffer);

smb.IfxLoClose(loFd);

System.out.println("Wrote: " + n +" bytes into it");

System.out.println("Smart-blob is closed ");

Blob blb = new IfxBblob(loPtr);

pstmt.setInt(1, 2); // set the Integer column

pstmt.setBlob(2, blb); // set the blob column

pstmt.executeUpdate();

System.out.println("Binding of smart large object to table is

 done");

Chapter 4. Working With Informix Types 4-63

pstmt.close();

smb.IfxLoRelease(loPtr);

System.out.println("Smart Blob Locator is released ");

The contents of the file data.dat are written to the BLOB column of the

large_tab table.

Retrieving Data from a Smart Large Object

The example in this section illustrates the steps in “Steps for Accessing Smart

Large Objects” on page 4-41.

The following code example shows how to access the smart large object data

using Informix extension classes:

byte[] buffer = new byte[200];

System.out.println("Reading data now ...");

try

 {

 int row = 0;

 Statement stmt = myConn.createStatement();

 ResultSet rs = stmt.executeQuery("Select * from demo_14");

 while(rs.next())

 {

 row++;

 String str = rs.getString(1);

 InputStream value = rs.getAsciiStream(2);

 IfxBblob b = (IfxBblob) rs.getBlob(2);

 IfxLocator loPtr = b.getLocator();

 IfxSmartBlob smb = new IfxSmartBlob(myConn);

 int loFd = smb.IfxLoOpen(loPtr, smb.LO_RDONLY);

 System.out.println("The Smart Blob is Opened for reading ..");

 int number = smb.IfxLoRead(loFd, buffer, buffer.length);

 System.out.println("Read total " + number + " bytes");

 smb.IfxLoClose(loFd);

 System.out.println("Closed the Smart Blob ..");

 smb.IfxLoRelease(loPtr);

 System.out.println("Locator is released ..");

 }

 rs.close();

 }

catch(SQLException e)

 {

 System.out.println("Select Failed ...\n" +e.getMessage());

 }

First, the ResultSet.getBlob() method gets an object of type BLOB. The casting

is required to convert the returned object to an object of type IfxBblob. Next,

the IfxBblob.getLocator() method gets an IfxLocator object from the IfxBblob

object. After the IfxLocator object is available, you can instantiate an

IfxSmartBlob object and use the IfxLoOpen() and IfxLoRead() methods to

read the smart large object data. Fetching CLOB data is similar, but it uses the

methods ResultSet.getClob(), IfxCblob.getLocator(), and so on.

4-64 IBM Informix JDBC Driver Programmer’s Guide

If you use getBlob() or getClob() to fetch data from a column of type BLOB,

you do not need to use the Informix extensions to retrieve the actual BLOB

content as outlined in the preceding sample code. You can simply use

Java.Blob.getBinaryStream() or Java.Clob.getAsciiStream() to retrieve the

content. IBM Informix JDBC Driver implicitly gets the content from the

database server for you, using basically the same steps as the sample code.

This approach is simpler than the approach of the preceding example but

does not provide as many options for reading the contents of the BLOB

column.

Chapter 4. Working With Informix Types 4-65

4-66 IBM Informix JDBC Driver Programmer’s Guide

Chapter 5. Working with Opaque Types

Using the IfmxUDTSQLInput Interface . 5-3

Reading Data . 5-3

Positioning in the Data Stream . 5-4

Setting or Obtaining Data Attributes . 5-4

Using the IfmxUDTSQLOutput Interface . 5-4

Mapping Opaque Data Types . 5-5

Caching Type Information . 5-5

Unsupported Methods . 5-6

Creating Opaque Types and UDRs . 5-6

Overview of Creating Opaque Types and UDRs 5-6

Preparing to Create Opaque Types and UDRs 5-8

Steps to Creating Opaque Types . 5-8

Steps to Creating UDRs . 5-11

Requirements for the Java Class . 5-12

SQL Names . 5-13

Specifying Characteristics for an Opaque Type 5-13

Specifying Field Count . 5-14

Specifying Additional Field Characteristics 5-14

Specifying Length . 5-15

Specifying Alignment . 5-15

Alignment Values . 5-16

Specifying SQL Names . 5-16

Specifying the Java Class Name . 5-16

Specifying Java Source File Retention . 5-16

Creating the JAR and Class Files . 5-17

Creating the .class and .java Files . 5-17

Creating the .jar File . 5-17

Sending the Class Definition to the Database Server 5-18

Specifying Deployment Descriptor Actions 5-18

Specifying a JAR File Temporary Path 5-19

Creating an Opaque Type from Existing Code 5-19

Using setXXXCast() Methods . 5-20

Using setSupportUDR() and setUDR() 5-20

Removing Opaque Types and JAR Files . 5-21

Creating UDRs . 5-22

Removing UDRs and JAR Files . 5-23

Removing Overloaded UDRs . 5-23

Obtaining Information About Opaque Types and UDRs 5-24

getXXX() Methods in the UDTMetaData Class 5-24

getXXX() Methods in the UDRMetaData Class 5-25

Executing in a Transaction . 5-25

Examples . 5-26

Class Definition . 5-26

Inserting Data . 5-27

© Copyright IBM Corp. 1996, 2004 5-1

Retrieving Data . 5-28

Using Smart Large Objects Within an Opaque Type 5-29

Creating an Opaque Type from an Existing Java Class with UDTManager 5-31

Creating an Opaque Type Using Default Support Functions 5-31

Creating an Opaque Type Using Support Functions You Supply 5-36

Creating an Opaque Type Without an Existing Java Class 5-39

Creating UDRs with UDRManager . 5-42

In This Chapter

An opaque data type is an atomic data type that you define to extend the

database server. The database server has no information about the opaque

data type until you provide routines that describe it.

Extending the database server also frequently requires that you create

user-defined routines (UDRs) to support the extensions. A UDR is a routine that

you create that can be invoked in an SQL statement, by the database server, or

from another UDR. UDRs can be part of opaque types, or they can be

separate.

The JDBC 3.0 standard provides the java.sql.SQLInput and

java.sql.SQLOutput methods to access opaque types. The definition of these

interfaces is extended to fully support Informix fixed binary and variable

binary opaque types. This extension includes the following interfaces:

v IfmxUdtSQLInput

v IfmxUdtSQLOutput

In addition, the following classes simplify creating Java opaque types and

UDRs in the database server from a JDBC client application:

v UDTManager

v UDTMetaData

v UDRManager

v UDRMetaData

The UDTManager and UDRManager classes provide an infrastructure for

mapping client-side Java classes as opaque data types and UDRs and storing

their instances in the database.

This facility works only in client-side JDBC. For details about the features and

limitations of server-side JDBC, see the IBM Informix: J/Foundation Developer's

Guide.

For detailed information about opaque types and UDRs, see the following

manuals:

5-2 IBM Informix JDBC Driver Programmer’s Guide

v IBM Informix: User-Defined Routines and Data Types Developer's Guide

discusses the terms and concepts about opaque types and UDRs that you

need to use the information in this section, including the internal data

structure, support functions, and implicit and explicit casts.

v The IBM Informix: J/Foundation Developer's Guide discusses information

specific to writing UDRs in Java.

You can find the online versions of both these guides at

http://www.ibm.com/software/data/informix/pubs/library/.

This chapter includes the following topics:

v Using the IfmxUDTSQLInput Interface

v Using the IfmxUDTSQLOutput Interface

v Mapping Opaque Data Types

v Caching Type Information

v Creating Opaque Types and UDRs

v Examples

Using the IfmxUDTSQLInput Interface

The com.informix.jdbc.IfmxUdtSQLInput interface extends

java.sql.SQLInput with several added methods. To use these methods, you

must cast the SQLInput references to IfmxUdtSQLInput. The methods allow

you to perform the following functions:

v Read data.

v Position in the data stream.

v Set or obtain attributes of the data.

Reading Data

The readString() method reads the next attribute in the stream as a Java

string. The readBytes() method reads the next attribute in the stream as a Java

byte array. Both methods are similar to the SQLInput.readBytes() method

except that a fixed length of data is read in:

public String readString(int maxlen) throws SQLException;

public byte[] readBytes(int maxlen) throws SQLException;

In both methods, you must supply a length for IBM Informix JDBC Driver to

read the next attribute properly, because the characteristics of the opaque type

are unknown to the driver. The maxlen parameter specifies the maximum

length of data to read in.

Chapter 5. Working with Opaque Types 5-3

Positioning in the Data Stream

The getCurrentPosition() method retrieves the current position in the input

stream. The setCurrentPosition() method changes the position in the input

stream to the position specified by the position parameter:

public int getCurrentPosition();

public void setCurrentPosition(int position) throws SQLException;

public void skipBytes(int len) throws SQLException;

The position parameter must be a positive integer. The skipBytes() method

changes the position in the input stream by the number of bytes specified by

the len parameter, relative to the current position. The len parameter must be a

positive integer.

In both setCurrentPosition() and skipBytes(), IBM Informix JDBC Driver

generates an SQLException if the new position specified is after the end of

the input stream.

Setting or Obtaining Data Attributes

The length() method returns the total length of the entire data stream. The

getAutoAlignment() method retrieves the TRUE or FALSE (on or off) state of the

auto alignment feature. The setAutoAlignment() method sets the state to TRUE

or FALSE:

public int length();

public boolean getAutoAlignment();

public void setAutoAlignment(boolean value);

Important: Setting the auto alignment feature might result in discarded bytes

from the input stream if the data is not already aligned. JDBC

applications should provide aligned data or set the auto alignment

feature to FALSE.

Using the IfmxUDTSQLOutput Interface

The com.informix.jdbc.IfmxUdtSQLOutput interface extends

java.sql.SQLOutput with the following added methods:

public void writeString(String str, int length) throws

 SQLException;

public void writeBytes(byte[] b, int length) throws SQLException;

To use these methods, you must cast the SQLOutput references to

IfmxUdtSQLOutput.

Use the writeString() method to write the next attribute to the stream as a

Java string. If the string passed in is shorter than the specified length,

IBM Informix JDBC Driver pads the string with zeros.

5-4 IBM Informix JDBC Driver Programmer’s Guide

Use the writeBytes() method to write the next attribute to the stream as a Java

byte array.

Both methods are similar to the SQLOutput.writeBytes() method except that

a fixed length of data is written to the stream. If the array or string passed in

is shorter than the specified length, IBM Informix JDBC Driver pads the array

or string with zeros. In both methods, you must supply a length for

IBM Informix JDBC Driver to write the next attribute properly, because the

opaque type is unknown to the driver.

Mapping Opaque Data Types

Informix opaque types map to Java objects, which must implement the

java.sql.SQLData interface. These Java objects describe all the data members

that make up the opaque type. These Java objects are strongly typed; that is,

each read or write method in the readSQL or writeSQL method of the Java

object must match the corresponding data member in the opaque type

definition. IBM Informix JDBC Driver cannot perform any type conversion

because the type structure is unknown to it.

IBM Informix JDBC Driver also requires that all opaque data be transported

as Informix DataBlade API data types, as defined in mitypes.h (this file is

included in all IBM Informix Dynamic Server installations). All opaque data is

stored in the database server table in a C struct, which is made up of various

DataBlade API types, as defined in the opaque type.

You do not need to handle mapping between Java and C if you use the UDT

and UDR Manager facility to create opaque types. For more information, see

“Creating Opaque Types and UDRs” on page 5-6.

Caching Type Information

When objects of some data types insert data into columns of certain other

data types, IBM Informix JDBC Driver verifies that the data provided matches

the data the database server expects by calling the

SQLData.getSQLTypeName() method. The driver asks the database server for

the type information with each insertion.

This occurs in the following cases:

v When an SQLData object inserts data into an opaque type column and

getSQLTypeName() returns the name of the opaque type

v When a Struct or SQLData object inserts data into a row column and

getSQLTypeName() returns the name of a named row

v When an SQLData object inserts data into a DISTINCT type column

Chapter 5. Working with Opaque Types 5-5

You can set an environment variable, ENABLE_CACHE_TYPE=1, in the database

URL, to have the driver cache the type information the first time it is

retrieved. The driver then asks the cache for the type information before

requesting the data from the database server.

Unsupported Methods

The following methods of the SQLInput and SQLOutput interfaces are not

supported for opaque types:

v java.sql.SQLInput

– readAsciiStream()

– readBinaryStream()

– readBytes()

– readCharacterStream()

– readObject()

– readRef()

– readString()

v java.sql.SQLOutput

– writeAsciiStream(InputStream x)

– writeBinaryStream(InputStream x)

– writeBytes(byte[] x)

– writeCharacterStream(Reader x)

– writeObject(Object x)

– writeRef(Ref x)

– writeString(String x)

Creating Opaque Types and UDRs

The UDTManager and UDRManager classes allow you to easily create and

deploy opaque types and user-defined routines (UDRs) in the database server.

Before using the information in this section, read the following two additional

manuals:

v For information about configuring your system to support Java UDRs, see

the IBM Informix: J/Foundation Developer's Guide.

v For detailed information about developing opaque types, see IBM Informix:

User-Defined Routines and Data Types Developer's Guide.

Overview of Creating Opaque Types and UDRs

In the database server, any Java class that implements the java.sql.SQLData

interface and is accessible to the Java Virtual Machine can be stored as an

opaque type. The UDTManager and UDRManager classes, together with

5-6 IBM Informix JDBC Driver Programmer’s Guide

their supporting UDTMetaData and UDRMetaData classes, extend this

facility to client applications: your Java client application can use these classes

to create opaque types and user-defined routines and transfer their class

definitions to the database server. The client does not need to be accessible to

the database server to use this functionality.

Important: This functionality is tightly coupled with server support for

creating and using Java opaque types and user-defined routines.

Any limitations on using Java opaque types and user-defined

routines that exist in your version of the database server apply

equally to Java opaque types and routines you create in your

client applications.

When you use the UDTManager and UDTMetaData classes, IBM Informix

JDBC Driver performs all of the following actions for your application:

1. Obtains the JAR file you specify

2. Transports the JAR file from the client local area to the server local area

You define the server local area using the

UDTManager.setJarFileTmpPath() method. The default is /tmp on UNIX

systems and C:\temp on Windows systems.

3. Installs the JAR file in the server

4. Registers the opaque data type in the database with the CREATE OPAQUE

TYPE SQL statement, taking input from the UDTMetaData class

5. Registers the support functions and casts you provide for the opaque type

using the CREATE Function and CREATE CAST SQL statements

You define support functions and casts using the setSupportUDR() and

setXXXCast() methods in the UDTMetaData class.

If you do not provide input and output functions for the opaque type, the

driver registers the default functions (see the release notes for any

limitations on this feature).

6. Registers any other nonsupport routines or casts (if any) that you

specified, taking input from the UDTMetaData.setUDR() and

UDTMetaData.setXXXCast() method calls in your application

7. Creates a mapping between an SQL OPAQUE type and a Java object

(using the sqlj.setUDTExtName() method)

When you use the UDRManager and UDRMetaData classes, IBM Informix

JDBC Driver performs the following actions:

1. Obtains the JAR file you specify

2. Transports the JAR file from the client local area to the server local area

3. Installs the JAR file in the server

Chapter 5. Working with Opaque Types 5-7

4. Registers the UDRs in the database with the CREATE FUNCTION SQL

statement, taking input from the UDRMetaData.setUDR() method calls in

your application

The methods in the UDT and UDR Manager facility perform the following

main functions:

v Creating opaque types in Java without preexisting Java classes, using the

default input and output methods the server provides

v Converting existing Java classes on the client to opaque types and UDRs in

the database server

v Converting Java static methods to UDRs

Preparing to Create Opaque Types and UDRs

Before using the UDT and UDR Manager facility, perform the following setup

tasks:

v Make sure your database server supports Java.

The UDT and UDR Manager facility does not work in legacy servers that

do not include Java support.

v Include either the ifxtools.jar or ifxtools_g.jar file in your CLASSPATH

setting.

v Create a directory named /usr/informix in the database server, with owner

and group set to user informix and permissions set to 777.

v Add the following entry to the /etc/group file in the database server:

informix::unique-id-number:

v Check the release notes for the driver and database server for any further

limitations in this release.

Steps to Creating Opaque Types

Using UDT Manager, you can create a Java opaque type from an existing Java

class that implements the SQLData interface. UDT Manager can also help you

create a Java opaque type without requiring that you have the Java class

ready; you specify the characteristics of the opaque type you want to create,

and the UDT Manager facility creates the Java class and then the Java opaque

type.

Follow the steps in this section to use the UDTManager classes.

 To create an opaque type from an existing Java class:

1. Ensure that the class meets the requirements for conversion to an opaque

type.

For the requirements, see “Requirements for the Java Class” on page 5-12.

2. If you do not want to use the default input and output routines provided

by the server, write support UDRs for input and output.

5-8 IBM Informix JDBC Driver Programmer’s Guide

For general information about writing support UDRs, see IBM Informix:

User-Defined Routines and Data Types Developer's Guide.

3. Create a default sbspace on the database server to hold the JAR file that

contains the code for the opaque type.

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the IBM Informix: J/Foundation Developer's Guide.

4. Open a JDBC connection.

Make sure a database object is associated with the connection object. The

driver cannot create an opaque type without a database object. For details

about creating a connection with a database object, see Chapter 2.

5. Instantiate an UDTManager object and an UDTMetaData object:

UDTManager udtmgr = new UDTManager(connection);

UDTMetaData mdata = new UDTMetaData();

6. Set properties for the opaque type by calling methods in the

UDTMetaData object.

At a minimum, you must specify the SQL name, UDT length, and JAR file

SQL name. For an explanation of SQL names, see “SQL Names” on page

5-13.

You can also specify the alignment, implicit and explicit casts, and any

support UDRs:

mdata.setSQLName("circle2");

mdata.setLength(24);

mdata.setAlignment(UDTMetaData.EIGHT_BYTE)

mdata.setJarFileSQLName("circle2_jar");

mdata.setUDR(areamethod, "area");

mdata.setSupportUDR(input, "input", UDTMetaData.INPUT)

mdata.setSupportUDR(output, "output",UDTMetaData.OUTPUT)

mdata.SetImplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_

 LVARCHAR, "input");

mdata.SetExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_

 LVARCHAR, "output");

7. If desired, specify a pathname where the driver should place the JAR file

in the database server file system:

String pathname = "/work/srv93/examples";

udtmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the server file system. For more information,

see “Specifying a JAR File Temporary Path” on page 5-19.

8. Create the opaque type:

udtmgr.createUDT(mdata, "Circle2.jar", "Circle2", 0);

For additional information on creating an opaque type from existing code, see

“Creating an Opaque Type from Existing Code” on page 5-19.

Chapter 5. Working with Opaque Types 5-9

For a complete code example of using the preceding steps to create an opaque

type, see “Creating an Opaque Type from an Existing Java Class with

UDTManager” on page 5-31.

 To create an opaque type without an existing Java class:

1. Create a default sbspace on the database server to hold the JAR file that

contains the code for the opaque type.

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the IBM Informix: J/Foundation Developer's Guide.

2. Open a JDBC connection.

Make sure the connection object has a database object associated with it.

For details, see Chapter 2, “Connecting to the Database,” on page 2-1.

3. Instantiate a UDTManager object and a UDTMetaData object:

UDTManager udtmgr = new UDTManager(connection);

UDTMetaData mdata = new UDTMetaData();

4. Specify the characteristics of the opaque type by calling methods in the

UDTMetaData class:

mdata.setSQLName("acircle");

mdata.setLength(24);

mdata.setFieldCount(3);

mdata.setFieldName(1, "x");

mdata.setFieldName(2, "y");

mdata.setFieldName(3, "radius");

mdata.setFieldType

 (1,com.informix.lang.IfxTypes.IFX_TYPE_INT);

mdata.setFieldType

 (2,com.informix.lang.IfxTypes.IFX_TYPE_INT);

mdata.setFieldType

 (3,com.informix.lang.IfxTypes.IFX_TYPE_INT);

mdata.setJarFileSQLName("ACircleJar");

For more information on setting characteristics for opaque types, see

“Specifying Characteristics for an Opaque Type” on page 5-13.

5. Create the Java file, the class file, and the JAR file:

mdata.keepJavaFile(true);

String classname = udtmgr.createUDTClass(mdata);

String jarfilename = udtmgr.createJar(mdata, new String[]

 {classname + .class"});

For more information, see “Creating the JAR and Class Files” on page

5-17.

6. If desired, specify a pathname where the driver should place the JAR file

in the database server file system:

String pathname = "/work/srv93/examples";

udtmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the server file system. For more information,

see “Specifying a JAR File Temporary Path” on page 5-19.

5-10 IBM Informix JDBC Driver Programmer’s Guide

7. Send the class definition to the database server:

udtmgr.createUDT(mdata, jarfilename, classname, 0);

For more information, see “Sending the Class Definition to the Database

Server” on page 5-18.

For a complete code example of using the preceding steps to create an opaque

type, see “Creating an Opaque Type Without an Existing Java Class” on page

5-39.

Steps to Creating UDRs

The following section tells how to create a UDR from a Java class.

 To create a UDR:

1. Write a Java class with one or more static method to be registered as

UDRs.

For more information, see “Requirements for the Java Class” on page 5-12.

2. Create an sbspace on the database server to hold the JAR file that contains

the code for the UDR.

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the IBM Informix: J/Foundation Developer's Guide.

3. Open a JDBC connection.

Make sure the connection object has a database object associated with it.

For details, see Chapter 2.

4. Instantiate a UDRManager object and a UDRMetaData object:

UDRManager udrmgr = new UDRManager(myConn);

UDRMetaData mdata = new UDRMetaData();

5. Create java.lang.Reflect.Method objects for the static methods to be

registered as UDRs. In the following example, method1 is an instance that

represents the udr1(string, string) method in the Group1 java class;

method2 is an instance that represents the udr2(Integer, String, String)

method in the Group1 Java class:

Class gp1 = Class.forName("Group1");

Method method1 = gp1.getMethod("udr1",

 new Class[]{String.class, String.class});

Method method2 = gp1.getMethod("udr2",

 new Class[]{Integer.class, String.class, String.class});

6. Specify which methods to register as UDRs.

The second parameter specifies the SQL name of the UDR:

mdata.setUDR(method1, "group1_udr1");

mdata.setUDR(method2, "group1_udr2");

For more information, see “Creating UDRs” on page 5-22.

7. Specify the JAR file SQL name:

mdata.setJarFileSQLName("group1_jar");

Chapter 5. Working with Opaque Types 5-11

8. If desired, specify a pathname where the driver should place the JAR file

in the database server file system:

String pathname = "/work/srv93/examples";

udrmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the database server file system. For more

information, see “Specifying a JAR File Temporary Path” on page 5-19.

9. Install the UDRs in the database server:

udrmgr.createUDRs(mdata, "Group1.jar", "Group1", 0);

For more information, see “Creating UDRs” on page 5-22.

For complete code examples of creating UDRs, see “Creating UDRs with

UDRManager” on page 5-42.

Requirements for the Java Class

To qualify for converting into an opaque type, your Java class must meet the

following conditions:

v The class must implement the java.sql.SQLData interface. For an example,

see “Examples” on page 5-26.

v If the class contains another opaque type, the additional opaque type must

be implemented in a similar way and the additional .class file must be

packaged as part of the same JAR file as the original opaque type.

v If the class contains DISTINCT types, the class can either implement the

SQLData interface for the DISTINCT types or let the driver map the

DISTINCT types to the base types. For more information, see “Distinct Data

Types” on page 4-2.

v The class cannot contain complex types.

v If you are creating an opaque type from an existing Java class and using the

default support functions in the database server, you must cast the

SQLInput and SQLOutput streams in SQLData.readSQL() and

SQLData.writeSQL() to IfmxUDTSQLInput and IfmxUDTSQLOutput.

For a code example that shows how to do this, see “Creating an Opaque

Type Using Default Support Functions” on page 5-31.

v All Java methods for the opaque type must be in the same .java file with

the class that defines the opaque type.

Additional requirements for UDRs are as follows:

v All class methods to be registered as UDRs must be static.

v The method argument types and the return types must be valid Java data

types.

v The methods can use all basic nongraphical Java packages that are included

in the JDK, such as java.util, java.io, java.net, java.rmi, java.sql, and so

forth.

5-12 IBM Informix JDBC Driver Programmer’s Guide

v Data types of method arguments and return types must conform to the data

type mapping tables shown in “Data Type Mapping for UDT Manager and

UDR Manager” on page C-16.

v The following SQL argument or return types are not supported:

– MONEY

– DATETIME with qualifier other than hour to second or year to

fraction(5)

– INTERVAL with qualifier other than year to month or day to fraction(5)

– Any data type not shown in the mapping tables for method arguments

and return types; for the tables, see “Data Type Mapping for UDT

Manager and UDR Manager” on page C-16.

SQL Names

Some of the methods in the UDTMetaData class set an SQL name for an

opaque type or a JAR file that contains the opaque type or UDR code. The

SQL name is the name of the object as referenced in SQL statements. For

example, assume your application makes the following call:

mdata.setSQLName("circle2");

The name as used in an SQL statement is as follows:

CREATE TABLE tab (c circle2);

Similarly, assume the application sets the JAR file name as follows:

mdata.setJarFileSQLname("circle2_jar");

The JAR filename as referenced in SQL is as follows:

CREATE FUNCTION circle2_output (...)

RETURNS circle2

EXTERNAL NAME

 ’circle2_jar: circle2.fromString (...)’

LANGUAGE JAVA

NOT VARIANT

END FUNCTION;

Important: There is no default value for an SQL name. Use the setSQLname()

or setJarFileSQLName() method to specify a name, otherwise an

SQL exception will be thrown.

Specifying Characteristics for an Opaque Type

The following sections provide additional information about creating an

opaque type without a preexisting Java class. Details about creating an

opaque type from an existing Java class begin with “Creating an Opaque Type

from Existing Code” on page 5-19.

Using the methods in the UDTMetaData class, you can specify characteristics

for a new opaque type. The characteristics you can specify are described on

Chapter 5. Working with Opaque Types 5-13

the following pages. These settings apply for new opaque types; for opaque

types created from existing files, see “Creating an Opaque Type from Existing

Code” on page 5-19.

You can set the following characteristics:

v The number of fields in the internal data structure that defines the opaque

type

v Additional characteristics, such as data type, name, and scale, of each field

in the internal structure that defines the opaque type

v The length of the opaque type

v The alignment of the opaque type

v The SQL name of the opaque type and the JAR file

v The name of the generated Java class

v Whether to keep the generated .java file

Specifying Field Count

The setFieldCount() method specifies the number of fields in the internal data

structure that defines the opaque type:

public void setFieldCount(int fieldCount) throws SQLException

Specifying Additional Field Characteristics

The following methods set additional characteristics for fields in the internal

data structure:

public void setFieldName (int field, String name) throws SQLException

public void setFieldType (int field, int ifxtype) throws SQLException

public void setFieldTypeName(int field, String sqltypename) throws SQLException

public void setFieldLength(int field, int length) throws SQLException

The field parameter indicates the field for which the driver should set or

obtain a characteristic. The first field is 1; the second field is 2, and so forth.

The name you specify with setFieldName() appears in the Java class file. The

following example sets the first field name to IMAGE.

mdata.setFieldName(1, "IMAGE");

The setFieldType() method sets the data type of a field using a constant from

the file com.informix.lang.IfxTypes. For more information, see “Mapping for

Field Types” on page C-18. The following example specifies the CHAR data

type for values in the third field:

mdata.setFieldType(3, com.informix.lang.IfxTypes.IFX_TYPE_CHAR);

The setFieldTypeName() method sets the data type of a field using the SQL

data type name:

mdata.setFieldTypeName(1, "IMAGE_UDT");

5-14 IBM Informix JDBC Driver Programmer’s Guide

This method is valid only for opaque and distinct types; for other types, the

driver ignores the information.

The length parameter has the following meanings, depending on the data type

of the field:

Character types Maximum length in characters

DATETIME Encoded length

INTERVAL Encoded length

Other data type or no type specified

Driver ignores the information

 The possible values for encoded length are those in the JDBC 2.20

specification: hour to second; year to second; and year to fraction(1), year to

fraction(2), up through year to fraction(5).

The following example specifies that the third (VARCHAR) field in an opaque

type cannot store more than 24 characters:

mdata.setFieldLength(3, 24);

Specifying Length

The setLength() method specifies the total length of the opaque type:

public void setLength(int length) throws SQLException

If you are creating an opaque type from an existing Java class and do not

specify a length, the driver creates a variable-length opaque type. If you are

creating an opaque type without an existing Java class, you must specify a

length; UDT Manager creates only fixed-length opaque types in this case.

Specifying Alignment

The setAlignment() method specifies the opaque type’s alignment:

public void setAlignment(int alignment)

The alignment parameter is one of the alignment values shown in the next

section. If you do not specify an alignment, the database server aligns the

opaque type on 4-byte boundaries.

Chapter 5. Working with Opaque Types 5-15

Alignment Values

Alignment values are shown in the following table.

Value Constant Structure Begins With

Boundary

Aligned On

1 SINGLE_BYTE 1-byte quantity single-byte

2 TWO_BYTE 2-byte quantity (such as SMALLINT) 2-byte

4 FOUR_BYTE 4-byte quantity (such as FLOAT or

UNSIGNED INT)

4-byte

8 EIGHT_BYTE 8-byte quantity 8-byte

Specifying SQL Names

Specify SQL names with the setSQLName() and setJarFileSQLName()

methods:

public void setSQLName(String name) throws SQLException

public void setJarFileSQLName(String name) throws SQLException

By default, the driver uses the name you set through the setSQLName()

method as the filenames of the Java class and JAR files generated when you

call the UDTManager.createUDTClass() and UDTManager.createJar()

methods. For example, if you called setSQLName("circle") and then called

createUDTClass() and createJar(), the class filename generated would be

circle.class and the JAR filename would be circle.jar. You can specify a Java

class filename other than the default by calling the setClassName() method.

The JAR file SQL name is the name as it will be referenced in the SQL

CREATE FUNCTION statement the driver uses to register a UDR.

Important: The JAR file SQL name is the name of the JAR file in SQL

statements; it has no relationship to the contents of the JAR file.

Specifying the Java Class Name

Use setClassName() to specify the Java class name:

public void setClassName(String name)throws SQLException

If you do not set a class name with setClassName(), the driver uses the SQL

name of the opaque type (set through setSQLName()) as the name of the Java

class and the filename of the .class file generated by the createUDTClass()

method.

Specifying Java Source File Retention

Use keepJavaFile() to specify whether to retain the .java source file:

public void keepJavaFile(boolean value)

5-16 IBM Informix JDBC Driver Programmer’s Guide

The value parameter indicates whether the createUDTClass() method should

retain the .java file that it generates when it creates the Java class file for the

new opaque type. The default is to remove the file. The following example

specifies keeping the .java file:

mdata.keepJavaFile(true);

Creating the JAR and Class Files

Once you have specified the characteristics of the opaque type through the

UDTMetaData methods, you can use the methods in the UDTManager class

to create opaque types and their class and JAR files in the following order:

1. Instantiate the UDTManager object.

The constructor is defined as follows:

public UDTManager(Connection conn) throws SQLException

2. Create the .class and .java files with the createUDTClass() method.

3. Create the .jar file with the createJar() method.

4. Create the opaque type with the createUDT() method.

Creating the .class and .java Files

The createUDTClass() method has the following signature:

public String createUDTClass(UDTMetaData mdata) throws SQLException

The createUDTClass() method causes the driver to perform all of the

following actions for your application:

1. Creates a Java class with the name you specified in the

UDTMetaData.setClassName() method

If no class name was specified, the driver uses the name specified in the

UDTMetaData.setSQLName() method.

2. Puts the Java class code into a .java file and then compile the file to a

.class file

3. Returns the name of the newly created class to your application

If you specified TRUE by calling the UDTMetaData.keepJavaFile() method, the

driver retains the generated .java file. The default is to delete the .java file.

Your application should call the createUDTClass() method only to create new

.class and .java files to define an opaque type, not to generate an opaque type

from existing files.

Creating the .jar File

The createJar() method compiles the class files you specify in the classnames

list. The files in the list must have the .class extension.

public String createJar(UDTMetaData mdata, String[] classnames)

 throws SQLException;

Chapter 5. Working with Opaque Types 5-17

The driver creates a JAR file named sqlname.jar (where sqlname is the name

you specified by calling UDTMetaData.setSQLName()) and returns the

filename to your application.

Sending the Class Definition to the Database Server

After you have created the JAR file, use the UDTManager.createUDT()

method to create the opaque type by sending the class definition to the

database server:

public void createUDT(UDTMetaData mdata, String jarfile, String

 classname, int deploy) throws SQLException;

The jarfile parameter is the pathname of a JAR (.jar) file that contains the class

definition for the opaque type. By default, the classes in the java.io package

resolve relative pathnames against the current user directory as named by the

system property user.dir; it is typically the directory in which the Java Virtual

Machine was invoked. The filename must be included in your CLASSPATH

setting if you use an absolute pathname.

The classname parameter is the name of the class that implements the opaque

type.

The SQL name of the opaque type defaults to the class name if your

application does not call setClassName(). You can specify an SQL name by

calling the UDTMetaData.setSQLName() method.

Important: If your application calls createUDT() within a transaction or your

database is ANSI or enables logging, some extra guidelines apply.

For more information, see “Executing in a Transaction” on page

5-25.

Specifying Deployment Descriptor Actions

In the UDTManager and UDRManager methods, the deploy parameter

indicates whether install_actions should be executed if a deployment

descriptor is present in the JAR file. The undeploy parameter indicates whether

remove_actions should be executed.

0 Execute install_actions or remove_actions.

Nonzero Do not execute install_actions or remove_actions.

 A deployment descriptor allows you to include the SQL statements for

creating and dropping UDRs in a JAR file. For more information about the

deployment descriptor, see the IBM Informix: J/Foundation Developer's Guide

and the SQLJ specification (Section 4.21 of the document SQLJ-Part 1: SQL

Routines Using the Java Programming Language, available on the Web at

http://www.sqlj.org).

5-18 IBM Informix JDBC Driver Programmer’s Guide

http://www.sqlj.org

Specifying a JAR File Temporary Path

When the driver ships the JAR file for an opaque type or UDR, it places the

file by default in /tmp (on UNIX) or in c:\temp (on Windows). You can

specify an alternative pathname by calling the setJarTmpPath() method in

either the UDTManager or UDRManager class:

public void setJarTmpPath(String path) throws SQLException

You can call this method at any point before calling createUDT() or

createUDR(), the UDTManager or UDRManager objects. The path parameter

must be an absolute pathname, and you must ensure that the path exists on

the server file system.

Creating an Opaque Type from Existing Code

The preceding pages describe methods you use to create a new opaque type

without an existing Java class. When you create an opaque type from existing

Java code, you specify the SQL name, JAR file SQL name, support UDRs (if

any), and any additional nonsupport UDRs that are included in the opaque

type. (For an explanation of SQL names, see “SQL Names” on page 5-13.) You

can also specify the length, alignment, and implicit and explicit casts.

To create an opaque type from existing code, use the following methods:

v UDTMetaData.setSQLName() to specify the SQL name of the opaque type

as referenced in SQL statements

v UDTMetaData.setSupportUDR() for each support UDR in the opaque type

Support UDRs are input/output, send/receive, and so forth.

v UDTMetaData.setUDR() for each nonsupport UDR in the opaque type

v UDTMetaData.setJarFileSQLName() to specify an SQL name for the JAR

file

v UDTMetaData.setImplicitCast() or UDTMetaData.setExplicitCast() to

specify each cast

v UDTMetaData.setLength() if the opaque type is fixed length (the driver

defaults to variable length)

v UDTMetaData.setAlignment() to specify the byte boundary on which the

opaque type is aligned (necessary only if you do not want the database

server to default to a 4-byte boundary)

v UDTManager.createJar() to create a JAR (.jar) file if you do not already

have one

v UDTManager.createUDT() to create the opaque type

In addition, the setXXXCast(), setSupportUDR(), and setUDR() methods are

used only for creating an opaque type from existing code:

public void setImplicitCast(int ifxtype, String methodsqlname)

 throws SQLException

public void setExplicitCast(int ifxtype, String methodsqlname)

Chapter 5. Working with Opaque Types 5-19

throws SQLException

public void setSupportUDR(Method method, String sqlname, int type)

 throws SQLException

public void setUDR(Method method, String sqlname)

 throws SQLException

Using setXXXCast() Methods

The setXXXCast() methods specify the implicit or explicit cast to convert data

from an opaque type to the data type specified.

The ifxtype parameter is a type code from the class

com.informix.lang.IfxTypes. Data type mapping between the ifxtype

parameter and the SQL type in the database server is detailed in “Mapping

for Casts” on page C-17. The methodsqlname parameter is the SQL name of the

Java method that implements the cast.

The following example sets an implicit cast implemented by a Java method

with the SQL name circle2_input:

setImplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_LVARCHAR,

 "circle2_input");

The following example sets an explicit cast implemented by a Java method

with the SQL name circle_output:

setExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_LVARCHAR,

 "circle2_output");

The following example sets an explicit cast for converting a circle2 opaque

type to an integer:

setExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_INT,

 "circle2_to_int");

Using setSupportUDR() and setUDR()

The setSupportUDR() method specifies a Java method in an existing Java

class that will be registered as a support UDR for the opaque type.

The method parameter specifies an object from java.lang.reflect.Method to be

registered as a Java support UDR for the opaque type in the database server.

Support UDRs are Input, Output, Send, Receive, and so forth (for more

information, see IBM Informix: User-Defined Routines and Data Types Developer's

Guide.)

The sqlname parameter specifies the SQL name of the method. For more

information, see “SQL Names” on page 5-13.

The type parameter specifies the kind of support UDR, as follows:

5-20 IBM Informix JDBC Driver Programmer’s Guide

UDTMetaData.INPUT

UDTMetaData.OUTPUT

UDTMetaData.SEND

UDTMetaData.RECEIVE

UDTMetaData.IMPORT

UDTMetaData.EXPORT

UDTMetaData.BINARYIMPORT

UDTMetaData.BINARYEXPORT

For step-by-step information on creating an opaque type from existing code,

see on page 5-8.

Tip: It is not necessary to register the methods in the SQLData interface. For

example, you do not need to register SQLData.getSQLTypeName(),

SQLData.readSQL(), or SQLData.writeSQL().

To specify other UDRs, use setUDR() as described in “Creating UDRs” on

page 5-22.

Removing Opaque Types and JAR Files

You can remove opaque types and their JAR files using the following

methods:

public static void removeUDT(String sqlname) throws SQLException

public static void removeJar(String jarfilesqlname, int undeploy)

 throws SQLException

The removeUDT() method removes the opaque type, with all its casts and

UDRs, from the database server. It does not remove the JAR file itself because

other opaque types or UDRs could be using the same JAR file.

Important: If your application calls removeUDT() within a transaction or if

your database is ANSI or enables logging, some extra guidelines

apply. For more information, see “Executing in a Transaction” on

page 5-25.

The removeJar() method removes the JAR file from the system catalog. The

jarfilesqlname parameter is the name you specified with the

setJarFileSQLName() method.

For the undeploy parameter, see “Specifying Deployment Descriptor Actions”

on page 5-18.

Important: Before calling removeJar(), you must first remove all functions

and procedures that depend on the JAR file. Otherwise, the

database server fails to remove the file.

Chapter 5. Working with Opaque Types 5-21

Creating UDRs

Using UDR Manager to create UDRs in the database server involves:

v Coding the UDRs and packaging the code in a JAR file

For details about coding UDRs, see the IBM Informix: J/Foundation

Developer's Guide.

v Creating a default sbspace in the database server to hold the JAR file that

contains the code for the UDR

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the IBM Informix: J/Foundation Developer's Guide.

v Calling methods in the UDRMetaData class to specify the information

necessary for IBM Informix JDBC Driver to register the UDRs in the

database server

v If desired, specifying a pathname where the driver should place the JAR file

in the database server file system

v Installing the UDRs in the server

Creating a UDR for a C-language opaque type is not supported; the opaque

type must be in Java.

To specify a UDR for the driver to register, use this method in UDRMetaData:

public void setUDR(Method method, String sqlname) throws SQLException

The method parameter specifies an object from java.lang.Reflect.Method to be

registered as a Java UDR in the database server. The sqlname parameter is the

name of the method as used in SQL statements.

Once you have specified the UDRs to be registered, you can set the JAR file

SQL name using UDRMetaData.setJarFileSQLName() and then use the

UDRManager.createUDRs() method to install the UDRs in the database

server, as follows:

public void createUDRs(UDRMetaData mdata, String jarfile, String

 classname, int deploy) throws SQLException

The jarfile parameter is the absolute or relative pathname of the client-side

JAR file that contains the Java method definitions. If you use the absolute

pathname, the JAR filename must be included in your CLASSPATH setting.

The classname parameter is the name of a Java class that contains the methods

you want to register as UDRs in the database server. Requirements for

preparing the Java methods are described on page 5-11.

For the deploy parameter, see “Specifying Deployment Descriptor Actions” on

page 5-18.

5-22 IBM Informix JDBC Driver Programmer’s Guide

The createUDRs() method causes the driver to perform all of the following

steps for your application:

1. Obtain the JAR file designated by the first parameter.

2. Transport the JAR file from the client local area to the server local area.

3. Register the UDRs specified in the UDRMetaData object (set through one

or more calls to UDRMetaData.setUDR()).

4. Install the JAR file and create the UDRs in the server.

After createUDRs() executes, your application can use the UDRs in SQL

statements.

Important: If your application calls createUDRs() within a transaction, or if

your database is ANSI or enables logging, some extra guidelines

apply. For more information, see “Executing in a Transaction” on

page 5-25.

Removing UDRs and JAR Files

You can remove UDRs using the following methods:

public void removeUDR(String sqlname) throws SQLException

public void removeJar(String jarfilesqlname, int undeploy) throws

 SQLException

Tip: The removeUDR() method removes the UDR from the server but does

not remove the JAR file, because other opaque types or UDRs could be

using the same JAR file.

The removeJar() method is described in “Removing Opaque Types and JAR

Files” on page 5-21.

Removing Overloaded UDRs

To remove overloaded UDRs, use the removeUDR() method with an

additional parameter:

public void removeUDR(String sqlname, Class[] methodparams) throws

 SQLException

The methodparams parameter specifies the data type of each parameter in the

UDR. Specify NULL to indicate no parameters. For example, assume a UDR

named print() is overloaded with two additional method signatures.

Java Method Signature Corresponding SQL Name

void print() print1

void print(String x, String y, int r)

print2

void print(int a, int b) print3

Chapter 5. Working with Opaque Types 5-23

The code to remove all three UDRs is:

udrmgr.removeUDR("print1", null);

udrmgr.removeUDR("print2",

 new Class[] {String.class, String.class, int.class});

udrmgr.removeUDR("print3", new Class[] {int.class, int.class});

Obtaining Information About Opaque Types and UDRs

Many of the setXXX() methods in the UDTMetaData and UDRMetaData

classes have parallel getXXX() methods for obtaining characteristics of existing

opaque types and UDRs.

getXXX() Methods in the UDTMetaData Class

The following table summarizes the available getXXX() methods in the

UDTMetaData class. For the field parameter, 1 designates the first field in the

internal data structure, 2 is the second, and so forth. For details about SQL

names, see “SQL Names” on page 5-13.

 Information Obtained Method Signature Notes

Number of fields in the

internal data structure

public int getFieldCount() Returns 0 if no fields are present

Name of a field in the

internal data structure

public String getFieldName

int field) throws SQLException

Returns NULL if no name exists

Data type code of a field

in the internal data

structure

public int getFieldType

(int field) throws SQLException

Data type codes come from the class

com.informix.lang.IfxTypes.

Returns -1 if no data type exists

Data type name of a field

in the internal data

structure

public String getFieldTypeName

(int field) throws SQLException

Returns NULL if no name exists

For character type:

maximum number of

characters in the field;

for date-time or interval

type: encoded qualifier

public int getFieldLength

(int field) throws SQLException

Returns -1 if no length was set

SQL name of the opaque

type

public String getSQLName() Returns NULL if no name was set

SQL name of the JAR file public String getJarFileSQLName() Returns NULL if no name was set

Name of the Java class

for the opaque type

public String getClassName() If no class name was set through

setClassName(), sqlname is returned

(this is the default). If no SQL name

was set through setSQLName(),

returns NULL

Length of a fixed-length

opaque type

public int getLength() Returns-1 if no length was set

5-24 IBM Informix JDBC Driver Programmer’s Guide

Information Obtained Method Signature Notes

Alignment of an opaque

type

public int getAlignment() Returns -1 if no alignment was set

For the alignment codes, see

“Alignment Values” on page 5-16.

An array of Method

objects that have been

specified as support

UDRs through

setSupportUDR()

public Method[] getSupportUDRs() For details about support UDRs, see

the description of setSupportUDR()

in “Creating an Opaque Type from

Existing Code” on page 5-19.

Returns NULL if no support UDRs

were specified

SQL name of a Java

method that was

specified as a support

UDR through

setSupportUDR()

public String

getSupportUDRSQLName (Method

method) throws SQLException

Returns NULL if no name was set

getXXX() Methods in the UDRMetaData Class

To obtain information about UDRs, use the methods in the following table.

 Information Obtained Method Signature Notes

An array of

java.lang.Method.Reflect

methods that have been

specified as UDRs for an

opaque type.

public Method[] getUDRs() To specify a UDR for an opaque type,

call the UDTMetaData.setUDR()

method. Returns NULL if no UDRs

were specified

SQL name of a Java

method

public String

getUDRSQLName(Method method)

throws SQLException

Returns NULL if no SQL name was

specified for the UDR Method object

Executing in a Transaction

If your database is ANSI or has logging enabled, and the application is not

already in a transaction, the driver executes the SQL statements to create

opaque types and UDRs on the server within a transaction. This means that

either all the steps will succeed, or all will fail. If the opaque type or UDR

creation fails at any point, the driver rolls back the transaction and throws an

SQLException.

If the application is already in a transaction when the

UDTManager.createUDT() or UDRManager.createUDRs() method calls are

issued, the SQL statements are executed within the existing transaction. This

means that if the driver returns an SQLException to your application during

the creation of the opaque type or UDR, your application must roll back the

transaction to ensure the integrity of the database. Otherwise, the opaque

type, parts of its casts, or UDRs could be left in the database.

Chapter 5. Working with Opaque Types 5-25

Examples

The rest of this chapter contains examples for creating and using opaque

types and UDRs. The following examples are included:

v “Class Definition” on page 5-26

v “Inserting Data” on page 5-27

v “Retrieving Data” on page 5-28

v “Using Smart Large Objects Within an Opaque Type” on page 5-29

v “Creating an Opaque Type from an Existing Java Class with UDTManager”

on page 5-31

v “Creating UDRs with UDRManager” on page 5-42

The first four examples are released with your JDBC driver software in the

demo/udt-distinct directory; the last two are in the demo/tools/udtudrmgr

directory. See the README file in each directory for a description of the files.

Class Definition

The class for the C opaque type, charattrUDT in the following example, must

implement the SQLData interface:

import java.sql.*;

import com.informix.jdbc.*;

/*

 * C struct of charattr_udt:

 *

 * typedef struct charattr_type

 * {

 * char chr1[4+1];

 * mi_boolean bold; // mi_boolean (1 byte)

 * mi_smallint fontsize; // mi_smallint (2 bytes)

 * }

 * charattr;

 *

 * typedef charattr charattr_udt;

 *

 */

public class charattrUDT implements SQLData

{

 private String sql_type = "charattr_udt";

 // an ASCII character/a multibyte character, and is null-terminated.

 public String chr1;

 // Is the character in boldface?

 public boolean bold;

 // font size of the character

 public short fontsize;

 public charattrUDT() { }

 public charattrUDT(String chr1, boolean bold, short fontsize)

 {

 this.chr1 = chr1;

 this.bold = bold;

 this.fontsize = fontsize;

 }

5-26 IBM Informix JDBC Driver Programmer’s Guide

public String getSQLTypeName()

 {

 return sql_type;

 }

 // reads a stream of data values and builds a Java object

 public void readSQL(SQLInput stream, String type) throws SQLException

 {

 sql_type = type;

 chr1 = ((IfmxUDTSQLInput)stream).readString(5);

 bold = stream.readBoolean();

 fontsize = stream.readShort();

 }

 // writes a sequence of values from a Java object to a stream

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 ((IfmxUDTSQLOutput)stream).writeString(chr1, 5);

 stream.writeBoolean(bold);

 stream.writeShort(fontsize);

 }

 // overides Object.equals()

 public boolean equals(Object b)

 {

 return (chr1.equals(((charattrUDT)b).chr1) &&

 bold == ((charattrUDT)b).bold &&

 fontsize == ((charattrUDT)b).fontsize);

 }

 public String toString()

 {

 return "chr1=" + chr1 + " bold=" + bold + " fontsize=" + fontsize;

 }

}

In your JDBC application, a custom type map must map the SQL-type name

charattr_udt to the charattrUDT class:

java.util.Map customtypemap = conn.getTypeMap();

if (customtypemap == null)

 {

 System.out.println("\n***ERROR: typemap is null!");

 return;

 }

customtypemap.put("charattr_udt", Class.forName("charattrUDT"));

Inserting Data

You can insert an opaque type as either its original type or its cast type. The

following example shows how to insert opaque data using the original type:

String s = "insert into charattr_tab (int_col, charattr_col)

 values (?, ?)";

System.out.println(s);

pstmt = conn.prepareStatement(s);

...

charattrUDT charattr = new charattrUDT();

charattr.chr1 = "a";

charattr.bold = true;

charattr.fontsize = (short)1;

pstmt.setInt(1, 1);

System.out.println("setInt...ok");

Chapter 5. Working with Opaque Types 5-27

pstmt.setObject(2, charattr);

System.out.println("setObject(charattrUDT)...ok");

pstmt.executeUpdate();

If a casting function is defined, and you would like to insert data as the

casting type instead of the original type, you must call the setXXX() method

that corresponds to the casting type. For example, if you have defined a

function casting CHAR or LVARCHAR to a charattrUDT column, you can use

the setString() method to insert data, as follows:

// Insert into UDT column using setString(int,String) and Java

 String object.

String s =

 "insert into charattr_tab " +

 "(decimal_col, date_col, charattr_col, float_col) " +

 "values (?,?,?,?)";

writeOutputFile(s);

PreparedStatement pstmt = myConn.prepareStatement(s);

...

String strObj = "(A, f, 18)";

pstmt.setString(3, strObj);

...

Retrieving Data

To retrieve Informix opaque types, you must use ResultSet.getObject().

IBM Informix JDBC Driver converts the data to a Java object according to the

custom type map you provide. Using the previous example of the

charattrUDT type, you can fetch the opaque data, as in the following

example:

String s = "select int_col, charattr_col from charattr_tab order by 1";

System.out.println(s);

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(s);

System.out.println("execute...ok");

System.out.println("Fetching data ...");

int curRow = 0;

while (rs.next())

 {

 curRow++;

 System.out.println("currentrow=" + curRow + " : ");

 int intret = rs.getInt("int_col");

 System.out.println(" int_col " + intret);

 charattrUDT charattrret = (charattrUDT)rs.getObject("charattr_col");

 System.out.print(" charattr_col ");

 if (curRow == 2 || curRow == 6)

 {

5-28 IBM Informix JDBC Driver Programmer’s Guide

if (rs.wasNull())

 System.out.println("<null>");

 else

 System.out.println("***ERROR: " + charattrret);

 }

 else

 System.out.println(charattrret+"");

 } //while

System.out.println("total rows expected: " + curRow);

stmt.close();

Using Smart Large Objects Within an Opaque Type

A smart large object can be a data member within an opaque type, although

you are most likely to create a large object on the database server, outside of

the opaque type context, using the Informix extension classes. For more

information about smart large objects, see “Smart Large Object Data Types”

on page 4-33.

A large object is stored as an IfxLocator object within the opaque type; in the

C struct that defines the opaque type internally, the large object is referenced

through a locator pointer of type MI_LO_HANDLE. The object is created

using the methods provided in the IfxSmartBlob class, and the large object

handle obtained from these methods becomes the data member within the

opaque type. Both BLOB and CLOB objects use the same large object handle,

as shown in the following example:

import java.sql.*;

import com.informix.jdbc.*;

/*

 * C struct of large_bin_udt:

 *

 * typedef struct LARGE_BIN_TYPE

 * {

 * MI_LO_HANDLE lb_handle; // handle to large object (72 bytes)

 * }

 * large_bin_udt;

 *

 */

public class largebinUDT implements SQLData

{

 private String sql_type = "large_bin_udt";

 public Clob lb_handle;

 public largebinUDT() { }

 public largebinUDT(Clob clob)

 {

 lb_handle = clob;

 }

 public String getSQLTypeName()

 {

Chapter 5. Working with Opaque Types 5-29

return sql_type;

 }

 // reads a stream of data values and builds a Java object

 public void readSQL(SQLInput stream, String type) throws SQLException

 {

 sql_type = type;

 lb_handle = stream.readClob();

 }

 // writes a sequence of values from a Java object to a stream

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 stream.writeClob(lb_handle);

 }

}

In a JDBC application, you create the MI_LO_HANDLE object using the

methods provided by the IfxSmartBlob class:

String s = "insert into largebin_tab (int_col, largebin_col, lvc_col) " +

 "values (?,?,?)";

System.out.println(s);

pstmt = conn.prepareStatement(s);

...

// create a large object using IfxSmartBlob’s methods

String filename = "lbin_in1.dat";

File file = new File(filename);

int fileLength = (int) file.length();

FileInputStream fin = new FileInputStream(file);

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

System.out.println("create large object descriptor...ok");

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob((IfxConnection)conn);

int loFd = smb.IfxLoCreate(loDesc, 8, loPtr);

System.out.println("create large object...ok");

int n = smb.IfxLoWrite(loFd, fin, fileLength);

System.out.println("write file content into large object...ok");

pstmt.setInt(1, 1);

System.out.println("setInt...ok");

// initialize largebin object using the large object created

// above, before doing setObject for the large_bin_udt column.

largebinUDT largebinObj = new largebinUDT();

largebinObj.lb_handle = new IfxCblob(loPtr);

pstmt.setObject(2, largebinObj);

System.out.println("setObject(largebinUDT)...ok");

pstmt.setString(3, "Hong Kong");

System.out.println("setString...ok");

pstmt.executeUpdate();

5-30 IBM Informix JDBC Driver Programmer’s Guide

System.out.println("execute...ok");

// close/release large object

smb.IfxLoClose(loFd);

System.out.println("close large object...ok");

smb.IfxLoRelease(loPtr);

System.out.println("release large object...ok");

See “Smart Large Object Data Types” on page 4-33 for details.

Creating an Opaque Type from an Existing Java Class with UDTManager

The following example shows how an application can use the UDTManager

and UDTMetaData classes to convert an existing Java class on the client

(inaccessible to the database server) to an SQL opaque type in the database

server.

Creating an Opaque Type Using Default Support Functions

The following example creates an opaque type named Circle, using an

existing Java class and using the default support functions provided in the

database server:

*/

import java.sql.*;

import com.informix.jdbc.IfmxUDTSQLInput;

import com.informix.jdbc.IfmxUDTSQLOutput;

public class Circle implements SQLData

{

 private static double PI = 3.14159;

 double x; // x coordinate

 double y; // y coordinate

 double radius;

 private String type = "circle";

 public String getSQLTypeName() { return type; }

 public void readSQL(SQLInput stream, String typeName)

 throws SQLException

 {

 // To be able to use the DEFAULT support functions supplied

 // by the server, you must cast the stream to IfmxUDTSQLInput.

 // (Server requirement)

 IfmxUDTSQLInput in = (IfmxUDTSQLInput) stream;

 x = in.readDouble();

 y = in.readDouble();

 radius = in.readDouble();

 }

 public void writeSQL(SQLOutput stream) throws SQLException

Chapter 5. Working with Opaque Types 5-31

{

 // To be able to use the DEFAULT support functions supplied

 // by the server, have to cast the stream to IfmxUDTSQLOutput.

 // (Server requirement)

 IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) stream;

 out.writeDouble(x);

 out.writeDouble(y);

 out.writeDouble(radius);

 }

 public static double area(Circle c)

 {

 return PI * c.radius * c.radius;

 }

}

Using the Opaque Type: The following JDBC client application installs the

class Circle (which is packaged in Circle .jar) as an opaque type in the system

catalog. Applications can then use the opaque type Circle as a data type in

SQL statements:

import java.sql.*;

import java.lang.reflect.*;

public class PlayWithCircle

{

 String dbname = "test";

 String url = null;

 Connection conn = null;

 public static void main (String args[])

 {

 new PlayWithCircle(args);

 }

 PlayWithCircle(String args[])

 {

 System.out.println("----------------");

 System.out.println("- Start - Demo 1");

 System.out.println("----------------");

 // -----------

 // Getting URL

 // -----------

 if (args.length == 0)

 {

 System.out.println("\n***ERROR: connection URL must be provided " +

 "in order to run the demo!");

 return;

 }

 url = args[0];

 // --------------

 // Loading driver

 // --------------

 try

5-32 IBM Informix JDBC Driver Programmer’s Guide

{

 System.out.print("Loading JDBC driver...");

 Class.forName("com.informix.jdbc.IfxDriver");

 System.out.println("ok");

 }

 catch (java.lang.ClassNotFoundException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 // ------------------

 // Getting connection

 // ------------------

 try

 {

 System.out.print("Getting connection...");

 conn = DriverManager.getConnection(url);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("URL = ’" + url + "’");

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 System.out.println();

 // -------------------

 // Setup UDT meta data

 // -------------------

 Method areamethod = null;

 try

 {

 Class c = Class.forName("Circle");

 areamethod = c.getMethod("area", new Class[] {c});

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("Cannot get Class: " + e.toString());

 return;

 }

 catch (NoSuchMethodException e)

 {

 System.out.println("Cannot get Method: " + e.toString());

 return;

 }

 UDTMetaData mdata = null;

 try

 {

 System.out.print("Setting mdata...");

 mdata = new UDTMetaData();

 mdata.setSQLName("circle");

 mdata.setLength(24);

 mdata.setAlignment(UDTMetaData.EIGHT_BYTE);

 mdata.setUDR(areamethod, "area");

 mdata.setJarFileSQLName("circle_jar");

 System.out.println("ok");

 }

 catch (SQLException e)

Chapter 5. Working with Opaque Types 5-33

{

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 // -------------------------------

 // Install the UDT in the database

 // -------------------------------

 UDTManager udtmgr = null;

 try

 {

 udtmgr = new UDTManager(conn);

 System.out.println("\ncreateJar()");

 String jarfilename = udtmgr.createJar(mdata,

 new String[] {"Circle.class"}); // jarfilename = circle.jar

 System.out.println(" jarfilename = " + jarfilename);

 System.out.println("\nsetJarTmpPath()");

 udtmgr.setJarTmpPath("/tmp");

 System.out.print("\ncreateUDT()...");

 udtmgr.createUDT(mdata,

 "/vobs/jdbc/demo/tools/udtudrmgr/" + jarfilename, "Circle", 0);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println();

 // ---------------

 // Now use the UDT

 // ---------------

 try

 {

 String s = "drop table tab";

 System.out.print(s + "...");

 Statement stmt = conn.createStatement();

 int count = stmt.executeUpdate(s);

 stmt.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 // -206 The specified table (%s) is not in the database.

 if (e.getErrorCode() != -206)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println("ok");

 }

 executeUpdate("create table tab (c circle)");

 // test DEFAULT Input function

 executeUpdate("insert into tab values (’10 10 10’)");

 // test DEFAULT Output function

 try

5-34 IBM Informix JDBC Driver Programmer’s Guide

{

 String s = "select c::lvarchar from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 String c = rs.getString(1);

 System.out.println(" circle = ’" + c + "’");

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 // test DEFAULT Send function

 try

 {

 // setup type map before using getObject() for UDT data.

 java.util.Map customtypemap = conn.getTypeMap();

 System.out.println("getTypeMap...ok");

 if (customtypemap == null)

 {

 System.out.println("***ERROR: map is null!");

 return;

 }

 customtypemap.put("circle", Class.forName("Circle"));

 System.out.println("put...ok");

 String s = "select c from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 Circle c = (Circle)rs.getObject(1, customtypemap);

 System.out.println(" c.x = " + c.x);

 System.out.println(" c.y = " + c.y);

 System.out.println(" c.radius = " + c.radius);

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 // test user’s non-support UDR

 try

 {

 String s = "select area(c) from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

Chapter 5. Working with Opaque Types 5-35

ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 double a = rs.getDouble(1);

 System.out.println(" area = " + a);

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 executeUpdate("drop table tab");

 // ------------------

 // Closing connection

 // ------------------

 try

 {

 System.out.print("Closing connection...");

 conn.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 }

}

Creating an Opaque Type Using Support Functions You Supply

In this example, the Java class Circle2 on the client is mapped to an SQL

opaque type named circle2. The circle2 opaque type uses support functions

provided by the programmer.

import java.sql.*;

import java.text.*;

import com.informix.jdbc.IfmxUDTSQLInput;

import com.informix.jdbc.IfmxUDTSQLOutput;

public class Circle2 implements SQLData

{

 private static double PI = 3.14159;

 double x; // x coordinate

 double y; // y coordinate

 double radius;

 private String type = "circle2";

 public String getSQLTypeName() { return type; }

 public void readSQL(SQLInput stream, String typeName)

 throws SQLException

 {

/* commented out - because the first release of the UDT/UDR Manager feature

 * does not support mixing user-supplied support functions

 * with server DEFAULT support functions.

 * However, once the mix is supported, this code needs to be used to

5-36 IBM Informix JDBC Driver Programmer’s Guide

* replace the existing code.

 *

 // To be able to use the DEFAULT support functions (other than

 // Input/Output) supplied by the server, you must cast the stream

 // to IfmxUDTSQLInput.

 IfmxUDTSQLInput in = (IfmxUDTSQLInput) stream;

 x = in.readDouble();

 y = in.readDouble();

 radius = in.readDouble();

 */

 x = stream.readDouble();

 y = stream.readDouble();

 radius = stream.readDouble();

 }

 public void writeSQL(SQLOutput stream) throws SQLException

 {

/* commented out - because the 1st release of UDT/UDR Manager feature

 * doesn’t support the mixing of user support functions

 * with server DEFAULT support functions.

 * However, once the mix is supported, this code needs to be used to

 * replace the existing code.

 *

 // To be able to use the DEFAULT support functions (other than

 // Input/Output) supplied by the server, you must cast the stream

 // to IfmxUDTSQLOutput.

 IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) stream;

 out.writeDouble(x);

 out.writeDouble(y);

 out.writeDouble(radius);

 */

 stream.writeDouble(x);

 stream.writeDouble(y);

 stream.writeDouble(radius);

 }

 /**

 * Input function - return the object from the String representation -

 * ’x y radius’.

 */

 public static Circle2 fromString(String text)

 {

 Number a = null;

 Number b = null;

 Number r = null;

 try

 {

 ParsePosition ps = new ParsePosition(0);

 a = NumberFormat.getInstance().parse(text, ps);

 ps.setIndex(ps.getIndex() + 1);

 b = NumberFormat.getInstance().parse(text, ps);

 ps.setIndex(ps.getIndex() + 1);

 r = NumberFormat.getInstance().parse(text, ps);

 }

 catch (Exception e)

 {

 System.out.println("In exception : " + e.getMessage());

 }

Chapter 5. Working with Opaque Types 5-37

Circle2 c = new Circle2();

 c.x = a.doubleValue();

 c.y = b.doubleValue();

 c.radius = r.doubleValue();

 return c;

 }

 /**

 * Output function - return the string of the form ’x y radius’.

 */

 public static String makeString(Circle2 c)

 {

 StringBuffer sbuff = new StringBuffer();

 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);

 NumberFormat.getInstance().format(c.x, sbuff, fp);

 sbuff.append(" ");

 NumberFormat.getInstance().format(c.y, sbuff, fp);

 sbuff.append(" ");

 NumberFormat.getInstance().format(c.radius, sbuff, fp);

 return sbuff.toString();

 }

 /**

 * user function - get the area of a circle.

 */

 public static double area(Circle2 c)

 {

 return PI * c.radius * c.radius;

 }

}

Using the Opaque Type: The following JDBC client application installs the

class Circle2 (which is packaged in Circle2.jar) as an opaque type in the

system catalog. Applications can then use the opaque type Circle2 as a data

type in SQL statements:

import java.sql.*;

import java.lang.reflect.*;

public class PlayWithCircle2

{

 String dbname = "test";

 String url = null;

 Connection conn = null;

 public static void main (String args[])

 {

 new PlayWithCircle2(args);

 }

 PlayWithCircle2(String args[])

 {

 // -----------

 // Getting URL

 // -----------

 if (args.length == 0)

5-38 IBM Informix JDBC Driver Programmer’s Guide

{

 System.out.println("\n***ERROR: connection URL must be provided " +

 "in order to run the demo!");

 return;

 }

 url = args[0];

 // --------------

 // Loading driver

 // --------------

 try

 {

 System.out.print("Loading JDBC driver...");

 Class.forName("com.informix.jdbc.IfxDriver");

 }

 catch (java.lang.ClassNotFoundException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 try

 {

 conn = DriverManager.getConnection(url);

 }

 catch (SQLException e)

 {

 System.out.println("URL = ’" + url + "’");

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 System.out.println();

Creating an Opaque Type Without an Existing Java Class

In this example, the Java class MyCircle on the client is used to create a

fixed-length opaque type in the database server named ACircle. The ACircle

opaque type uses the default support functions provided by the database

server:

import java.sql.*;

public class MyCircle

{

 String dbname = "test";

 String url = null;

 Connection conn = null;

 public static void main (String args[])

 {

 new MyCircle(args);

 }

 MyCircle(String args[])

 {

 System.out.println("----------------");

 System.out.println("- Start - Demo 3");

 System.out.println("----------------");

Chapter 5. Working with Opaque Types 5-39

// -----------

 // Getting URL

 // -----------

 if (args.length == 0)

 {

 System.out.println("\n***ERROR: connection URL must be provided " +

 "in order to run the demo!");

 return;

 }

 url = args[0];

 // --------------

 // Loading driver

 // --------------

 try

 {

 System.out.print("Loading JDBC driver...");

 Class.forName("com.informix.jdbc.IfxDriver");

 System.out.println("ok");

 }

 catch (java.lang.ClassNotFoundException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 // ------------------

 // Getting connection

 // ------------------

 try

 {

 System.out.print("Getting connection...");

 conn = DriverManager.getConnection(url);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("URL = ’" + url + "’");

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 // -------------------

 // Setup UDT meta data

 // -------------------

 UDTMetaData mdata = null;

 try

 {

 mdata = new UDTMetaData();

 System.out.print("Setting fields in mdata...");

 mdata.setSQLName("acircle");

 mdata.setLength(24);

 mdata.setFieldCount(3);

 mdata.setFieldName(1, "x");

 mdata.setFieldName(2, "y");

 mdata.setFieldName(3, "radius");

 mdata.setFieldType(1, com.informix.lang.IfxTypes.IFX_TYPE_INT);

 mdata.setFieldType(2, com.informix.lang.IfxTypes.IFX_TYPE_INT);

 mdata.setFieldType(3, com.informix.lang.IfxTypes.IFX_TYPE_INT);

 // set class name if don’t want to use the default name

 // <udtsqlname>.class

5-40 IBM Informix JDBC Driver Programmer’s Guide

mdata.setClassName("ACircle");

 mdata.setJarFileSQLName("ACircleJar");

 mdata.keepJavaFile(true);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 return;

 }

 // --

 // create java file for UDT and install UDT in the database

 // --

 UDTManager udtmgr = null;

 try

 {

 udtmgr = new UDTManager(conn);

 System.out.println("Creating .class/.java files - " +

 "createUDTClass()");

 String classname = udtmgr.createUDTClass(mdata); // generated

 //java file is kept

 System.out.println(" classname = " + classname);

 System.out.println("\nCreating .jar file - createJar()");

 String jarfilename = udtmgr.createJar(mdata,

 new String[]{"ACircle.class"}); // jarfilename is

 // <udtsqlname>.jar

 // ie. acircle.jar

 System.out.println("\nsetJarTmpPath()");

 udtmgr.setJarTmpPath("/tmp");

 System.out.print("\ncreateUDT()...");

 udtmgr.createUDT(mdata,

 "/vobs/jdbc/demo/tools/udtudrmgr/" + jarfilename, "ACircle", 0);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println();

 // ---------------

 // Now use the UDT

 // ---------------

 try

 {

 String s = "drop table tab";

 System.out.print(s + "...");

 Statement stmt = conn.createStatement();

 int count = stmt.executeUpdate(s);

 stmt.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 // -206 The specified table (%s) is not in the database.

 if (e.getErrorCode() != -206)

Chapter 5. Working with Opaque Types 5-41

{

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println("ok");

 }

 executeUpdate("create table tab (c acircle)");

 // test DEFAULT Input function

 executeUpdate("insert into tab values (’10 10 10’)");

 // test DEFAULT Output function

 try

 {

 String s = "select c::lvarchar from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 String c = rs.getString(1);

 System.out.println(" acircle = ’" + c + "’");

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 executeUpdate("drop table tab");

 // ------------------

 // Closing connection

 // ------------------

 try

 {

 System.out.print("Closing connection...");

 conn.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 }

 System.out.println("------------------");

 System.out.println("- End - UDT Demo 3");

 System.out.println("------------------");

 }

Creating UDRs with UDRManager

The following code shows how an application can use the UDRManager and

UDRMetaData classes to convert methods in a Java class on the client

(inaccessible to the database server) to Java UDRs in the database server.

5-42 IBM Informix JDBC Driver Programmer’s Guide

Applications can later reference the UDRs in SQL statements. In this example,

the Java class on the client is named Group1. The class has two routines, udr1

and udr2.

The following code creates methods in the Group1 class to be registered as

UDRs in the database server:

import java.sql.*;

public class Group1

{

 public static String udr1 (String s1, String s2)

 throws SQLException

 {

 return s1 + s2;

 }

 // Return a formatted string with all inputs

 public static String udr2 (Integer i, String s1,

 String s2) throws SQLException

 {

 return "{" + i + "," + s1 + "," + s2 +"}";

 }

}

The following code creates Java methods udr1 and udr2 as UDRs

group1_udr1 and group1_udr2 in the database server and then uses the

UDRs:

import java.sql.*;

import java.lang.reflect.*;

public class PlayWithGroup1

{

// Open a connection...

url = "jdbc:informix-sqli://hostname:portnum:db/:

 informixserver=servname;user=scott;password=tiger;

myConn = DriverManager.getConnection(url);

//Install the routines in the database.

UDRManager udtmgr = new UDRManager(myConn);

UDRMetaData mdata = new UDRMetaData();

Class gp1 = Class.forName("Group1");

Method method1 = gp1.getMethod("udr1",

 new Class[]{String.class, String.class});

Method method2 = gp1.getMethod("udr2",

 new Class[]{Integer.class, String.class, String.class});

mdata.setUDR(method1, "group1_udr1");

mdata.setUDR(method2, "group1_udr2");

mdata.setJarFileSQLName("group1_jar");

udtmgr.createUDRs(mdata, "Group1.jar", "Group1", 0);

// Use the UDRs in SQL statements:

Statement stmt = myConn.createStatement();

stmt.executeUpdate("create table tab (c1 varchar(10),

Chapter 5. Working with Opaque Types 5-43

c2 char(20)", c3 int);

stmt.close();

Statement stmt = myConn.createStatement();

stmt.executeUpdate("insert into tab values (’hello’, ’world’,

 222)");

stmt.close();

Statement stmt = myConn.createStatement();

ResultSet r = stmt.executeQuery("select c3, group1_udr2(c3, c1, c2)

 from tab where group1_udr1(c1, c2) = ’hello world’");

...

}

5-44 IBM Informix JDBC Driver Programmer’s Guide

Chapter 6. Internationalization and Date Formats

Support for JDK and Internationalization . 6-2

Support for IBM Informix GLS Variables . 6-2

Support for DATE End-User Formats . 6-3

GL_DATE Variable . 6-4

DBDATE Variable . 6-6

DBCENTURY Variable . 6-8

Precedence Rules for End-User Formats . 6-10

Support for Code-Set Conversion . 6-11

Unicode to Database Code Set . 6-11

Unicode to Client Code Set . 6-13

Connecting to a Database with Non-ASCII Characters 6-14

Code-Set Conversion for TEXT Data Types 6-14

Converting Using the IFX_CODESETLOB Environment Variable 6-14

Converting Using JDK Methods . 6-15

User-Defined Locales . 6-16

Support for Localized Error Messages . 6-18

In This Chapter

This chapter explains how IBM Informix JDBC Driver extends the JDK

internationalization features by providing access to Informix databases that

are based on different locales and code sets. This chapter includes the

following sections:

v Support for JDK and Internationalization

v Support for IBM Informix GLS Variables

v Support for DATE End-User Formats

v Precedence Rules for End-User Formats

v Support for Code-Set Conversion

v User-Defined Locales

v Support for Localized Error Messages

Internationalization allows you to develop software independently of the

countries or languages of its users and then to localize your software for

multiple countries or regions.

For general information about setting up global language support (GLS), refer

to the IBM Informix: GLS User's Guide.

© Copyright IBM Corp. 1996, 2004 6-1

Support for JDK and Internationalization

The JDK provides a rich set of APIs for developing global applications. These

internationalization APIs are based on the Unicode 2.0 code set and can adapt

text, numbers, dates, currency, and user-defined objects to any country’s

conventions.

The internationalization APIs are concentrated in three packages:

v The java.text package contains classes and interfaces for handling text in a

locale-sensitive way.

v The java.io package contains new classes for importing and exporting

non-Unicode character data.

v The java.util package contains the Locale class, the localization support

classes, and new classes for date and time handling.

For more information about JDK internationalization support, see the Sun

Microsystems documentation.

Warning: There is no connection between JDK locales and JDK code sets; you

must keep these in agreement. For example, if you select the

Japanese locale ja_JP, there is no Java method that tells you that the

SJIS code set is the most appropriate.

Support for IBM Informix GLS Variables

Internationalization adds several environment variables to IBM Informix

JDBC Driver, which are summarized in the following table. All

internationalization properties are available on and optional for servers that

support GLS.

6-2 IBM Informix JDBC Driver Programmer’s Guide

Supported Informix

Environment Variables Description

CLIENT_LOCALE Specifies the locale of the client that is accessing the

database Provides defaults for user-defined formats such as

the GL_DATE format User-defined data types can use it for

code-set conversion. Together with the DB_LOCALE

variable, the database server uses this variable to establish

the server processing locale. The DB_LOCALE and

CLIENT_LOCALE values must be the same, or their code

sets must be convertible.

DBCENTURY Enables you to specify the appropriate expansion for one-

or two-digit year DATE values

DBDATE Specifies the end-user formats of values in DATE columns

Supported for backward compatibility; GL_DATE is

preferred.

DB_LOCALE Specifies the locale of the databaseIBM Informix JDBC

Driver uses this variable to perform code-set conversion

between Unicode and the database locale. Together with the

CLIENT_LOCALE variable, the database server uses this

variable to establish the server processing locale. The

DB_LOCALE and CLIENT_LOCALE values must be the

same, or their code sets must be convertible.

GL_DATE Specifies the end-user formats of values in DATE columns

This variable is supported in Informix database server

versions 7.2x, 8.x, 9.x, and 10.x.

NEWCODESET Allows new code sets to be defined between releases of

IBM Informix JDBC Driver

NEWLOCALE Allows new locales to be defined between releases of

IBM Informix JDBC Driver

Important: The DB_LOCALE, CLIENT_LOCALE, and GL_DATE variables

are supported only if the database server supports the

IBM Informix GLS feature. If these environment variables are set

and your application connects to a non-GLS server (server

versions earlier than 7.2), a connection exception occurs. If you

connect to a non-GLS server and do not set these variables, the

behavior is the same as for older versions of IBM Informix JDBC

Driver.

Support for DATE End-User Formats

The end-user format is the format in which a DATE value appears in a string

variable. This section describes the GL_DATE, DBDATE, and DBCENTURY

variables, which specify DATE end-user formats. These variables are optional.

Chapter 6. Internationalization and Date Formats 6-3

Important: IBM Informix JDBC Driver does not support ALS 6.0, 5.0, or 4.0

formats for the DBDATE or GL_DATE environment variables.

For more information on GL_DATE, see IBM Informix: GLS User's Guide.

GL_DATE Variable

The GL_DATE environment variable specifies the end-user formats of values

in DATE columns. This variable is supported in Informix database servers

7.2x, 8.x, 9.x, and 10.x. A GL_DATE format string can contain the following

characters:

v One or more white-space characters

v An ordinary character (other than the % symbol or a white-space character)

v A formatting directive, which is composed of the % symbol followed by

one or two conversion characters that specify the required replacement

Date formatting directives are defined in the following table.

Directive Replaced By

%a The abbreviated weekday name as defined in the locale

%A The full weekday name as defined in the locale

%b The abbreviated month name as defined in the locale

%B The full month name as defined in the locale

%C The century number (the year divided by 100 and truncated

to an integer) as a decimal number (00 through 99)

%d The day of the month as a decimal number (01 through 31)

 A single digit is preceded by a zero (0).

%D Same as the %m/%d/%y format

%e The day of the month as a decimal number (1 through 31)

 A single digit is preceded by a space.

%h Same as the %b formatting directive

%iy The year as a two-digit decade (00 through 99)

 It is the Informix-specific formatting directive for %y.

%iY The year as a four-digit decade (0000 through 9999)

 It is the Informix-specific formatting directive for %Y.

%m The month as a decimal number (01 through 12)

%n A newline character

%t The TAB character

6-4 IBM Informix JDBC Driver Programmer’s Guide

%w The weekday as a decimal number (0 through 6)

 The 0 represents the locale equivalent of Sunday.

%x A special date representation that the locale defines

%y The year as a two-digit decade (00 through 99)

%Y The year as a four-digit decade (0000 through 9999)

%% % (to allow % in the format string)

Important: GL_DATE optional date format qualifiers for field specifications

are not supported.

For example, using %4m to display a month as a decimal number

with a maximum field width of 4 is not supported.

The GL_DATE conversion modifier O, which indicates use of

alternative digits for alternative date formats, is not supported.

White space or other nonalphanumeric characters must appear between any

two formatting directives. If a GL_DATE variable format does not correspond

to any of the valid formatting directives, errors can result when the database

server attempts to format the date.

For example, for a U.S. English locale, you can format an internal DATE value

for 09/29/1998 using the following format:

* Sep 29, 1998 this day is:(Tuesday), a fine day *

To create this format, set the GL_DATE environment variable to this value:

* %b %d, %Y this day is:(%A), a fine day *

To insert this date value into a database table that has a date column, you can

perform the following types of inserts:

v Nonnative SQL, in which SQL statements are sent to the database server

unchanged

Enter the date value exactly as expected by the GL_DATE setting.

v Native SQL, in which escape syntax is converted to an Informix-specific

format

Enter the date value in the JDBC escape format yyyy-mm-dd; the value is

converted to the GL_DATE format automatically.

The following example shows both types of inserts:

To retrieve the formatted GL_DATE DATE value from the database, call the

getString() method of the ResultSet class.

Chapter 6. Internationalization and Date Formats 6-5

To enter strings that represent dates into database table columns of char,

varchar, or lvarchar type, you can also build date objects that represent the

date string value. The date string value must be in GL_DATE format.

The following example shows both ways of selecting DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from

 tablename "

 + "where col2 like ?;");

pstmt.setString(1, "%Tue%");

ResultSet r = pstmt.executeQuery();

while(r.next())

 {

 String s = r.getString(1);

 java.sql.Date d = r.getDate(2);

 System.out.println("Select: column col1 (GL_DATE format) = <"

 + s + ">");

 System.out.println("Select: column col2 (JDBC Escape format) = <"

 + d + ">");

 }

r.close();

pstmt.close();

DBDATE Variable

Support for the DBDATE environment variable provides backward

compatibility for client applications that are based on Informix database

server versions prior to 7.2x, 8.x, or 9.x. You should use the GL_DATE

environment variable for new applications.

The DBDATE environment variable specifies the end-user formats of values

in DATE columns. End-user formats are used in the following ways:

v When you input DATE values, IBM Informix products use the DBDATE

environment variable to interpret the input. For example, if you specify a

literal DATE value in an INSERT statement, Informix database servers

require this literal value to be compatible with the format specified by the

DBDATE variable.

v When you display DATE values, IBM Informix products use the DBDATE

environment variable to format the output.

With standard formats, you can specify the following attributes:

v The order of the month, day, and year in a date

v Whether the year is printed with two digits (Y2) or four digits (Y4)

v The separator between the month, day, and year

The format string can include the following characters:

v Hyphen (-), dot (.), and slash (/) are separator characters in a date

format. A separator appears at the end of a format string (for example

Y4MD-).

6-6 IBM Informix JDBC Driver Programmer’s Guide

v A 0 indicates that no separator is displayed.

v D and M are characters that represent the day and the month.

v Y2 and Y4 are characters that represent the year and the number of digits in

the year.

The following format strings are valid standard DBDATE formats:

v DMY2

v DMY4

v MDY4

v MDY2

v Y4MD

v Y4DM

v Y2MD

v Y2DM

The separator always goes at the end of the format string (for example,

DMY2/). If no separator or an invalid character is specified, the slash (/)

character is the default.

For the U.S. ASCII English locale, the default setting for DBDATE is Y4MD-,

where Y4 represents a four-digit year, M represents the month, D represents

the day, and hyphen (-) is the separator (for example, 1998-10-08).

To insert a date value into a database table with a date column, you can

perform the following types of inserts:

v Nonnative SQL. SQL statements are sent to the database server unchanged.

Enter the date value exactly as expected by the DBDATE setting.

v Native SQL. Escape syntax is converted to an Informix-specific format.

Enter the date value in the JDBC escape format yyyy-mm-dd; the value is

converted to the DBDATE format automatically.

The following example shows both types of inserts (the DBDATE value is

MDY2-):

stmt = conn.createStatement();

cmd = "create table tablename (col1 date, col2 varchar(20));";

rc = stmt.executeUpdate(cmd);..

.String[] dateVals = {"’08-10-98’", "{d ’1998-08-11’}" };

String[] charVals = {"’08-10-98’", "’08-11-98’" };

int numRows = dateVals.length;

for (int i = 0; i < numRows; i++)

 {

 cmd = "insert into tablename values(" + dateVals[i] + ", " +

 charVals[i] + ")";

Chapter 6. Internationalization and Date Formats 6-7

rc = stmt.executeUpdate(cmd);

 System.out.println("Insert: column col1 (date) = " + dateVals[i]);

 System.out.println("Insert: column col2 (varchar) = " + charVals[i]);

 }

To retrieve the formatted DBDATE DATE value from the database, call the

getString method of the ResultSet class.

To enter strings that represent dates into database table columns of char,

varchar, or lvarchar type, you can build date objects that represent the date

string value. The date string value needs to be in DBDATE format.

The following example shows both ways to select DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from tablename "

 + "where col1 = ?;");

GregorianCalendar gc = new GregorianCalendar(1998, 7, 10);

java.sql.Date dateObj = new java.sql.Date(gc.getTime().getTime());

pstmt.setDate(1, dateObj);

ResultSet r = pstmt.executeQuery();

while(r.next())

 {

 String s = r.getString(1);

 java.sql.Date d = r.getDate(2);

 System.out.println("Select: column col1 (DBDATE format) = <"

 + s + ">");

 System.out.println("Select: column col2 (JDBC Escape format) = <"

 + d + ">");

 }

r.close();

pstmt.close();

DBCENTURY Variable

If a String value represents a DATE value that has less than a three-digit year

and DBCENTURY is set, IBM Informix JDBC Driver converts the String

value to a DATE value and uses the DBCENTURY property to determine the

correct four-digit expansion of the year.

The methods affected and the conditions under which they are affected are

summarized in the following table.

6-8 IBM Informix JDBC Driver Programmer’s Guide

Method Condition

PreparedStatement.setString(int, String) The target column is DATE.

PreparedStatement.setObject(int, String) The target column is DATE.

IfxPreparedStatement.IfxSetObject(String) The target column is DATE.

ResultSet.getDate(int)ResultSet.getDate(int,

Calendar)ResultSet.getDate(String)ResultSet.

getDate(String, Calendar)

The source column is a String type.

ResultSet.getTimestamp(int)ResultSet.

getTimestamp(int, Calendar)ResultSet.

getTimestamp(String)ResultSet.getTimestamp

(String, Calendar)

The source column is a String type.

ResultSet.updateString(int,

String)ResultSet.updateString(String, String)

The target column is DATE.

ResultSet.updateObject(int,

String)ResultSet.updateObject(int, String,

int)ResultSet.updateObject(String,

String)ResultSet.updateObject(String, String,

int)

The target column is DATE.

The following table describes the four possible settings for the DBCENTURY

environment variable.

 Setting Meaning Description

P Past Uses past and present centuries to expand the year value.

F Future Uses present and next centuries to expand the year value.

C Closest Uses past, present, and next centuries to expand the year value.

R Present Uses present century to expand the year value.

See the “Environment Variables” section in the IBM Informix: Guide to SQL

Reference for a discussion of the algorithms used for each setting and examples

of each setting.

Here is an example of a URL that sets the DBCENTURY value:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

 user=myname;password=mypasswd;DBCENTURY=F;

A URL must not have a line break.

Chapter 6. Internationalization and Date Formats 6-9

IBM Informix JDBC Driver always includes four-digit years when it sends

java.sql.Date and java.sql.Timestamp values to the server. Similarly, the

server always includes four-digit years when it sends Informix date values to

IBM Informix JDBC Driver.

For examples of how to use DBCENTURY with IBM Informix JDBC Driver,

see the DBCENTURYSelect.java, DBCENTURYSelect2.java,

DBCENTURYSelect3.java, DBCENTURYSelect4.java, and

DBCENTURYSelect5.java example programs.

Precedence Rules for End-User Formats

The precedence rules that define how to determine an end-user format for an

internal DATE value are listed here:

v If a DBDATE format is specified, this format is used.

v If a GL_DATE format is specified, a locale must be determined:

– If a CLIENT_LOCALE value is specified, it is used in conjunction with

the GL_DATE format string to display DATE values.

– If a DB_LOCALE value is specified but a CLIENT_LOCALE value is

not, the DB_LOCALE value is compared with the database locale (read

from the systables table of the user database) to verify that the

DB_LOCALE value is valid. If the DB_LOCALE value is valid, it is used

in conjunction with the GL_DATE format string to display DATE values.

If the DB_LOCALE value is not valid, the database locale is used in

conjunction with the GL_DATE format string.

– If neither CLIENT_LOCALE nor DB_LOCALE values are specified, the

database locale is used in conjunction with the GL_DATE format string

to display DATE values.
v If a CLIENT_LOCALE value is specified, the DATE formats conform to the

default formats associated with this locale.

v If a DB_LOCALE value is specified but no CLIENT_LOCALE value is

specified, the DB_LOCALE value is compared with the database locale to

verify that the DB_LOCALE value is valid.

If the DB_LOCALE value is valid, the DB_LOCALE default formats are

used. If the DB_LOCALE value is not valid, the default formats for dates

associated with the database locale are used.

v If neither CLIENT_LOCALE nor DB_LOCALE values are specified, all

DATE values are formatted in U.S. English format, Y4MD-.

6-10 IBM Informix JDBC Driver Programmer’s Guide

Support for Code-Set Conversion

Code-set conversion converts character data from one code set to another. In a

client/server environment, character data might need to be converted from

one code set to another if the client and database server computers use

different code sets to represent the same characters. For detailed information

about code-set conversion, see the IBM Informix: GLS User's Guide.

You must specify code-set conversion for the following types of character

data:

v SQL data types (char, varchar, nchar, nvarchar)

v SQL statements

v Database objects such as database names, column names, table names,

statement identifier names, and cursor names

v Stored procedure text

v Command text

v Environment variables

IBM Informix JDBC Driver converts character data as it is sent between client

and database server. The code set (encoding) used for the conversion is

specified in the systables catalog for the opened database. You set the

DB_LOCALE and CLIENT_LOCALE values in the connection properties or

database URL.

Unicode to Database Code Set

Java is Unicode based, so IBM Informix JDBC Driver converts data between

Unicode and the Informix database code set. The code-set conversion value is

extracted from the DB_LOCALE value specified at the time the connection is

made. If this DB_LOCALE value is incorrect, the database locale (stored in

the database systables catalog) is used in the connection and in the code-set

conversion.

The DB_LOCALE value must be a valid Informix locale, with a valid

Informix code-set name or number as shown in the compatibility table that

follows. The following table maps the supported JDK 1.2 encodings to

Informix code sets.

Chapter 6. Internationalization and Date Formats 6-11

Informix Code Set Name Informix Code Set Number JDK Code Set

8859-1 819 8859_1

8859-2 912 8859_2

8859-3 57346 8859_3

8859-4 57347 8859_4

8859-5 915 8859_5

8859-6 1089 8859_6

8859-7 813 8859_7

8859-8 916 8859_8

8859-9 920 8859_9

ASCII 364 ASCII

sjis-s 932 SJIS

sjis 57350 SJIS

utf8 57372 UTF8

big5 57352 Big5

CP1250 1250 Cp1250

CP1251 1251 Cp1251

CP1252 1252 Cp1252

CP1253 1253 Cp1253

CP1254 1254 Cp1254

CP1255 1255 Cp1255

CP1256 1256 Cp1256

CP1257 1257 Cp1257

cp949 57356 Cp949

KS5601 57356 Cp949

ksc 57356 Cp949

ujis 57351 EUC_JP

gb 57357 ISO2022CN_GB

GB2312-80 57357 ISO2022CN_GB

cp936 57357 ISO2022CN_GB

You cannot use an Informix locale with a code set for which there is no

JDK-supported encoding. This incorrect usage results in an Encoding not

supported error message.

6-12 IBM Informix JDBC Driver Programmer’s Guide

If the connection is made but the database server returns a warning of a

mismatch between the DB_LOCALE value sent and the real value in the

database systables catalog, the correct database locale is automatically

extracted from the systables catalog, and the client uses the correct JDK

encoding for the connection.

The following table shows the supported locales.

 Supported Locales

ar_ae ar_bh ar_kw ar_om ar_qa

ar_sa bg_bg ca_es cs_cz da_dk

de_at de_ch de_de el_gr en_au

en_ca en_gb en_ie en_nz en_us

es_ar es_bo es_cl es_co es_cr

es_ec es_es es_gt es_mx es_pa

es_pe es_py es_sv es_uy es_ve

fi_fi fr_be fr_ca fr_ch fr_fr

hr_hr hu_hu is_is it_ch it_it

iw_il ja_jp ko_kr mk_mk nl_be

nl_nl no_no pl_pl pt_br pt_pt

ro_ro ru_ru sh_yu sk_sk sv_se

th_th tr_tr uk_ua zh_cn zh_tw

Unicode to Client Code Set

Because the Unicode code set includes all existing code sets, the Java virtual

machine (JVM) must render the character using the platform’s local code set.

Inside the Java program, you must always use Unicode characters. The JVM

on that platform converts input and output between Unicode and the local

code set.

For example, you specify button labels in Unicode, and the JVM converts the

text to display the label correctly. Similarly, when the getText() method gets

user input from a text box, the client program gets the string in Unicode, no

matter how the user entered it.

Never read a text file one byte at a time. Always use the InputStreamReader()

or OutputStreamWriter() methods to manipulate text files. By default, these

methods use the local encoding, but you can specify an encoding in the

constructor of the class, as follows:

InputStreamReader = new InputStreamReader (in, "SJIS");

You and the JVM are responsible for getting external input into the correct

Java Unicode string. Thereafter, the database locale encoding is used to send

the data to and from the database server.

Chapter 6. Internationalization and Date Formats 6-13

Connecting to a Database with Non-ASCII Characters

If you do not specify the database name at connection time, the connection

must be opened with the correct DB_LOCALE value for the specified

database.

If close database and database dbname statements are issued, the connection

continues to use the original DB_LOCALE value to interpret the database

name. If the DB_LOCALE value of the new database does not match, an error

is returned. In this case, the client program must close and reopen the

connection with the correct DB_LOCALE value for the new database.

If you supply the database name at connection time, the DB_LOCALE value

must be set to the correct database locale.

Code-Set Conversion for TEXT Data Types

IBM Informix JDBC Driver does not automatically convert between code sets

for TEXT, BYTE, CLOB, and BLOB data types.

You can convert between code sets for TEXT and CLOB data types in one of

the following ways:

v You can automate code-set conversion for TEXT or CLOB data between the

client and database locales by using the IFX_CODESETLOB environment

variable.

v You can convert between code sets for TEXT data by using the getBytes(),

getString(), InputStreamReader(), and OutputStreamWriter() methods.

Converting Using the IFX_CODESETLOB Environment Variable

You can automate the following pair of code-set conversions for TEXT and

CLOB data types:

v Convert from client locale to database locale before the data is sent to the

database server.

v Convert from database locale to client locale before the data is retrieved by

the client.

To automate code-set conversion for TEXT and CLOB data types, set the

IFX_CODESETLOB environment variable in the connection URL. For example:

IFX_CODESETLOB = 4096. You can also use the following methods of the

IfxDataSource class to set and get the value of IFX_CODESETLOB:

public void setIfxIFX_CODESETLOB(int codesetlobFlag);

public int getIfxIFX_CODESETLOB();

IFX_CODESETLOB can have the values listed in the following table.

Value Result

none Default

6-14 IBM Informix JDBC Driver Programmer’s Guide

Automatic code-set conversion is not enabled.

0 Automatic code-set conversion takes place in internal

temporary files.

> 0 Automatic code-set conversion takes place in the memory of

the client computer. The value indicates the number of bytes

allocated for the conversion.

 If the number of allocated bytes is less than the size of the

large object, an error is returned.

 To perform conversion in memory, you must specify an amount that is smaller

than the memory limits of the client machines and larger than the possible

size of any converted large object.

When you are using any of the following java.sql.Clob interface methods or

Informix extensions to the Clob interface, no codeset conversion is performed,

even if the IFX_CODESETLOB environment variable is set. These methods

include:

IfxCblob::setAsciiStream(long

Clob::setAsciiStream(long position, InputStream fin, int length)

IFX_CODESETLOB takes effect only for methods from the

java.sql.PreparedStatement interface.

However when using any of following java.sql.Clob interface methods or

Informix extensions to Clob interface, Unicode characters are always

converted automatically to the database locale codeset. Here is a list of those

methods:

Clob::setCharacterStream(long) throws SQLException

Clob::setString(long, String) throws SQLException

Clob:: setString(long pos, String str, int offset, int len)

IfxCblob::setSubString(long position, String str, int length)

Converting Using JDK Methods

The getBytes(), getString(), InputStreamReader(), and OutputStreamWriter()

methods take a code-set parameter that converts to and from Unicode and the

specified code set. These methods are covered in detail in Sun’s JDK

documentation.

Here is sample code that shows how to convert a file from the client code set

to Unicode and then from Unicode to the database code set:

File infile = new File("data_jpn.dat");

File outfile = new File ("data_conv.dat");..

.pstmt = conn.prepareStatement("insert into t_text values (?)");..

.// Convert data from client encoding to database encoding

System.out.println("Converting data ...\n");

try

Chapter 6. Internationalization and Date Formats 6-15

{

 String from = "SJIS";

 String to = "8859_1";

 convert(infile, outfile, from, to);

 }

catch (Exception e)

 {

 System.out.println("Failed to convert file");

 }

System.out.println("Inserting data ...\n");

try

 {

 int fileLength = (int) outfile.length();

 fin = new FileInputStream(outfile);

 pstmt.setAsciiStream(1 , fin, fileLength);

 pstmt.executeUpdate();

 }

catch (Exception e)

 {

 System.out.println("Failed to setAsciiStream");

 }..

.public static void convert(File infile, File outfile, String from, String to)

 throws IOException

 {

 InputStream in = new FileInputStream(infile);

 OutputStream out = new FileOutputStream(outfile);

 Reader r = new BufferedReader(new InputStreamReader(in, from));

 Writer w = new BufferedWriter(new OutputStreamWriter(out, to));

 //Copy characters from input to output. The InputStreamReader converts

 // from the input encoding to Unicode, and the OutputStreamWriter

 // converts from Unicode to the output encoding. Characters that can

 // not be represented in the output encoding are output as ’?’

 char[] buffer = new char[4096];

 int len;

 while ((len = r.read(buffer)) != -1)

 w.write(buffer, 0, len);

 r.close();

 w.flush();

 w.close();

 }

When you retrieve data from the database, you can use the same approach to

convert the data from the database code set to the client code set.

User-Defined Locales

IBM Informix JDBC Driver uses the JDK internationalization API to

manipulate international data. The classes and methods in this API take a JDK

locale or encoding as a parameter, but because the Informix DB_LOCALE and

CLIENT_LOCALE properties specify the locale and code set based on

Informix names, these Informix names are mapped to the JDK names. These

mappings are kept in internal tables, which are updated periodically.

6-16 IBM Informix JDBC Driver Programmer’s Guide

For example, the Informix and JDK names for the ASCII code set are 8859-1

and 8859_1, respectively. IBM Informix JDBC Driver maps 8859-1 to 8859_1 in

its internal tables and uses the appropriate JDK name in the JDK classes and

methods.

Because new locales may be created between updates of these tables, two new

connection properties, NEWLOCALE and NEWCODESET, let you specify a

locale or code set that is not specified in the tables. Here is an example URL

using these properties:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

 user=myname; password=mypasswd;NEWLOCALE=en_us,en_us;

 NEWCODESET=8859_1,8859-1,819;

A URL must be on one line.

The NEWLOCALE and NEWCODESET properties have the following

formats:

NEWLOCALE=JDK-locale,Ifx-locale:JDK-locale,Ifx-locale...

NEWCODESET=JDK-encoding,Ifx-codeset,Ifx-codeset-number:JDK-

 encoding, Ifx-codeset,Ifx-codeset-number...

There is no limit to the number of locale or code-set mappings you can

specify.

If you specify an incorrect number of parameters or values, you get a Locale

Not Supported or Encoding or Code Set Not Supported message.

If these properties are set in the URL or a DataSource object, the new values

in NEWLOCALE and NEWCODESET override the values in the JDBC

internal tables. For example, if JDBC already maps 8859-1 to 8859_1 internally,

but you specify NEWCODESET=8888,8859-1,819 instead, the new value 8888 is

used for the code-set conversion.

To support connecting to NLS databases, IBM informix JDBC Driver maintains

a table mapping NLS locale to the corresponding JDK locale and JDK codeset.

As JDK support for more locales and codesets becomes available, an NLS

locale not previously supported can be supported with newer JDKs. IBM

Informix JDBC Driver supports a connection property, NEWNLSMAP, which

lets you specify mappings for an NLS locale that is not specified in the tables.

The NEWNLSMAP property has the following format:

NEWNLSMAP=NLS-locale,JDK-locale,JDK-codeset:NLS-locale,JDK-locale,

JDK-codeset,....

Here is an example URL using these properties:

Chapter 6. Internationalization and Date Formats 6-17

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

user=myname;password=mypasswd;NEWNLSMAP=rumanian,ro_RO,ISO8859_2;

There is no limit to the number of mappings you can specify. If you specify an

incorrect number of parameters or values, you get a Locale Not Supported or

Encoding or Code Set Not Supported message.

Support for Localized Error Messages

Message text is usually the text of an SQLException object, but can also be an

SQLWarn object or any other text output from the driver.

There are two requirements to enable localized message text output, as

follows:

v You must add the full path of the ifxlang.jar file to the $CLASSPATH

(UNIX) or %CLASSPATH% (Windows) environment variable. This JAR file

contains localized versions of all message text supported by IBM Informix

JDBC Driver. Supported languages are English, German, French, Spanish,

Russian, Polish, Czech, Slovak, Chinese (simplified and traditional), Korean,

and Japanese.

v The CLIENT_LOCALE environment variable value must be passed through

the property list to the connection object at connection time if you are using

a nondefault locale. For more information about CLIENT_LOCALE and

GLS features in general, see “Support for IBM Informix GLS Variables” on

page 6-2.

Several public classes have constructors that take the current connection object

as a parameter so they have access to the CLIENT_LOCALE value. If you

want access to non-English error messages, you must use the constructors that

include the connection object. Otherwise, any error message text from those

classes is in English only. Affected public classes are Interval, IntervalYM,

IntervalDF, and IfxLocator. For more information about the constructors to use

for these classes, see Chapter 4, “Working With Informix Types,” on page 4-1.

For an example of how to use the localized error message support feature, see

the locmsg.java program, which is included with IBM Informix JDBC Driver.

6-18 IBM Informix JDBC Driver Programmer’s Guide

Chapter 7. Tuning and Troubleshooting

Debugging Your JDBC API Program . 7-1

Managing Performance . 7-1

The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables 7-2

Managing Memory for Large Objects . 7-2

Reducing Network Traffic . 7-4

Using Bulk Inserts . 7-5

Using a Connection Pool . 7-5

Deploying a ConnectionPoolDataSource Object 7-5

Tuning the Connection Pool Manager . 7-6

Using High-Availability Data Replication with Connection Pooling 7-8

Cleaning Pooled Connections . 7-9

Managing Connections . 7-10

In This Chapter

This chapter provides tuning and troubleshooting information for

IBM Informix JDBC Driver. It covers the following topics:

v Debugging Your JDBC API Program

v Managing Performance

Debugging Your JDBC API Program

If your Java program contains JDBC API programming errors, you might

want to use the debug version of IBM Informix JDBC Driver instead of the

optimized version to try to find where the errors occur in your program.

Managing Performance

This section describes issues that might affect the performance of your

queries:

v The FET_BUF_SIZE and BIG_FET_BUF_SIZE environment variables

v Memory management of large objects

v Reducing network traffic

v Using bulk inserts

v Tuning the connection pool.

© Copyright IBM Corp. 1996, 2004 7-1

The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables

When a SELECT statement is sent from a Java program to an Informix

database, the returned rows, or tuples, are stored in a tuple buffer in

IBM Informix JDBC Driver. The default size of the tuple buffer is the larger of

the returned tuple size or 4096 bytes.

You can use the Informix FET_BUF_SIZE environment variable to override

the default size of the tuple buffer. FET_BUF_SIZE can be set to any positive

integer less than or equal to 32,767. If the FET_BUF_SIZE environment

variable is set, and its value is larger than the default tuple buffer size, the

tuple buffer size is set to the value of FET_BUF_SIZE.

Extended Parallel Server

In IBM Informix Extended Parallel Server, Version 8.4, you can use the

BIG_FET_BUF_SIZE connection property to override the default size of the

tuple buffer. The XPS server allows the fetch buffer size to be increased up to

2 GB.

BIG_FET_BUF_SIZE can be set to any positive integer less than or equal to 2

GB. If the BIG_FET_BUF_SIZE environment variable is set and its value is

larger than the default tuple buffer size, the tuple buffer size is set to the

value of BIG_FET_BUF_SIZE. This could help increase the insert cursor

performance for tables fragmented on multiple coservers in IBM Informix

Extended Parallel Server, Version 8.4.

End of Extended Parallel Server

 Increasing the size of the tuple buffer can reduce network traffic between your

Java program and the database, often resulting in better performance of

queries. There are times, however, when increasing the size of the tuple buffer

can actually degrade the performance of queries. This could happen if your

Java program has many active connections to a database or if the swap space

on your computer is limited. If this is true for your Java program or

computer, you might not want to use the FET_BUF_SIZE or

BIG_FET_BUF_SIZE environment variable to increase the size of the tuple

buffer.

For more information on setting Informix environment variables, see

Chapter 2, “Connecting to the Database,” on page 2-1. For more information

on increasing the fetch buffer size, see the IBM Informix: Guide to SQL

Reference.

Managing Memory for Large Objects

Whenever a large object (a BYTE, TEXT, BLOB, or CLOB data type) is fetched

from the database server, the data is either cached into memory or stored in a

7-2 IBM Informix JDBC Driver Programmer’s Guide

temporary file (if it exceeds the memory buffer). A JDBC applet can cause a

security violation if it tries to create a temporary file on the local computer. In

this case, the entire large object must be stored in memory.

You can specify how large object data is stored by using an environment

variable, LOBCACHE, that you include in the connection property list, as

follows:

v To set the maximum number of bytes allocated in memory to hold the data,

set the LOBCACHE value to that number of bytes.

If the data size exceeds the LOBCACHE value, the data is stored in a

temporary file. If a security violation occurs during creation of this file, the

data is stored in memory.

v To always store the data in a file, set the LOBCACHE value to 0.

In this case, if a security violation occurs, IBM Informix JDBC Driver makes

no attempt to store the data in memory. This setting is not supported for

unsigned applets. For more information, see “Using the Driver in an

Applet” on page 1-12.

v To always store the data in memory, set the LOBCACHE value to a

negative number.

If the required amount of memory is not available, IBM Informix JDBC

Driver throws the SQLException message Out of Memory.

If the LOBCACHE size is invalid or not defined, the default size is 4096.

You can set the LOBCACHE value through the database URL, as follows:

URL = jdbc:informix-sqli://158.58.9.37:7110/test:user=guest;

password=iamaguest;informixserver=oltapshm;

lobcache=4096";

The preceding example stores the large object in memory if the size is 4096

bytes or fewer. If the large object exceeds 4096 bytes, IBM Informix JDBC

Driver tries to create a temporary file. If a security violation occurs, memory

is allocated for the entire large object. If that fails, the driver throws an

SQLException message.

Here is another example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:

 user=guest:passwd=whoknows;informixserver=olserv01;lobcache=0";

The preceding example uses a temporary file for storing the fetched large

object.

Here is a third example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:

 passwd=whoknows;informixserver=olserv01;lobcache=-1";

Chapter 7. Tuning and Troubleshooting 7-3

The preceding example always uses memory to store the fetched large object.

For programming information on how to use the TEXT and BYTE data types

in a Java program, refer to “BYTE and TEXT Data Types” on page 4-5. For

programming information on how to use the BLOB and CLOB data types in a

Java program, refer to “Smart Large Object Data Types” on page 4-33.

Reducing Network Traffic

The two environment variables OPTOFC and IFX_AUTOFREE can be used to

reduce network traffic when you close Statement and ResultSet objects.

Set OPTOFC to 1 to specify that the ResultSet.close() method does not

require a network round trip if all the qualifying rows have already been

retrieved in the client’s tuple buffer. The database server automatically closes

the cursor after all the rows have been retrieved.

IBM Informix JDBC Driver might or might not have additional rows in the

client’s tuple buffer before the next ResultSet.next() method is called.

Therefore, unless IBM Informix JDBC Driver has received all rows from the

database server, the ResultSet.close() method might still require a network

round trip when OPTOFC is set to 1.

Set IFX_AUTOFREE to 1 to specify that the Statement.close() method does

not require a network round trip to free the database server cursor resources

if the cursor has already been closed in the database server.

You can also use the setAutoFree(boolean flag) and getAutoFree() methods to

free database server cursor resources. For more information, see “Using the

Auto Free Feature” on page 3-23.

The database server automatically frees the cursor resources right after the

cursor is closed, either explicitly by the ResultSet.close() method or implicitly

by the OPTOFC environment variable.

When the cursor resources have been freed, the cursor can no longer be

referenced.

For examples of how to use the OPTOFC and IFX_AUTOFREE environment

variables, see the autofree.java and optofc.java demonstration examples

described in Appendix A, “Sample Code Files,” on page A-1. In these

examples, the variables are set with the Properties.put() method.

For more information on setting Informix environment variables, refer to

“Using Informix Environment Variables” on page 2-13.

7-4 IBM Informix JDBC Driver Programmer’s Guide

Using Bulk Inserts

The bulk insert feature improves the performance of single INSERT statements

that are executed multiple times with multiple value settings. For more

information, see “Performing Bulk Inserts” on page 3-7.

Using a Connection Pool

To improve the performance and scalability of your application, you can

obtain your connection to the database server through a DataSource object

that references a ConnectionPoolDataSource object. IBM Informix JDBC

Driver provides a Connection Pool Manager as a transparent component of

the ConnectionPoolDataSource object. The Connection Pool Manager keeps a

closed connection in a pool instead of returning the connection to the

database server as closed. Whenever a user requests a new connection, the

Connection Pool Manager gets the connection from the pool, avoiding the

overhead of having the server close and re-open the connection.

Using the ConnectionPoolDataSource object can significantly improve

performance in cases where your application receives frequent, periodic

connection requests.

For complete information about how and why to use a DataSource or

ConnectionPoolDataSource object, see the JDBC 3.0 API provided by Sun

Microsystems, available from the following Web site: http://java.sun.com.

Important: This feature does not affect IfxXAConnectionPoolDataSource,

which operates under the assumption that connection pooling is

handled by the transaction manager.

The following sections discuss how to use connection pooling with

IBM Informix JDBC Driver:

v “Deploying a ConnectionPoolDataSource Object,” next

v “Tuning the Connection Pool Manager” on page 7-6

v “Using High-Availability Data Replication with Connection Pooling” on

page 7-8

v “Cleaning Pooled Connections” on page 7-9

Deploying a ConnectionPoolDataSource Object

In the following steps:

v The variable cpds refers to a ConnectionPoolDataSource object.

v The JNDI logical name for the ConnectionPoolDataSource object is

myCPDS.

v The variable ds refers to a DataSource object.

v The logical name for the DataSource object is DS_Pool.

Chapter 7. Tuning and Troubleshooting 7-5

http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/index.html

To deploy a ConnectionPoolDataSource object:

1. Instantiate an IfxConnectionPoolDataSource object.

2. Set any desired tuning properties for the object:

cpds.setIfxCPMInitPoolSize(15);

cpds.setIfxCPMMinPoolSize(2);

cpds.setIfxCPMMaxPoolSize(20);

cpds.setIfxCPMServiceInterval(30);

3. Register the ConnectionPoolDataSource object using JNDI to map a

logical name to the object:

Context ctx = new InitialContext();

ctx.bind("myCPDS",cpds);

4. Instantiate an IfxDataSource object.

5. Associate the DataSource object with the logical name you registered for

the ConnectionPoolDataSource object:

ds.setDataSourceName("myCPDS",ds);

6. Register the DataSource object using JNDI:

Context ctx = new InitialContext();

ctx.bind("DS_Pool",ds);

Tuning the Connection Pool Manager

During the deployment phase, you or your database administrator can control

how connection pooling works in your applications by setting values for any

of these Connection Pool Manager properties:

v IFMX_CPM_INIT_POOLSIZE lets you specify the initial number of

connections to be allocated for the pool when the

ConnectionPoolDataSource object is first instantiated and the pool is

initialized. The default is 0.

Set this property if your application will need many connections when the

ConnectionPoolDataSource object is first instantiated.

To obtain the value, call getIfxCPMInitPoolSize().

To set the value, call setIfxCPMInitPoolSize (int init).

v IFMX_CPM_MAX_CONNECTIONS lets you specify the maximum number

of simultaneous physical connections that the DataSource object can have

with the server.

The value -1 specifies an unlimited number. The default is -1.

To obtain the value, call getIfxCPMMaxConnections().

To set the value, call setIfxCPMMaxConnections(int limit).

v IFMX_CPM_MIN_POOLSIZE lets you specify the minimum number of

connections to maintain in the pool. See the IFMX_CPM_MIN_AGELIMIT

parameter for what to do when this minimum number of connections kept

in the pool exceeds the age limit. The default is 0.

To obtain the value, call getIfxCPMMinPoolSize().

7-6 IBM Informix JDBC Driver Programmer’s Guide

To set the value, call setIfxCPMMinPoolSize(int min).

v IFMX_CPM_MAX_POOLSIZE lets you specify the maximum number of

connections to maintain in the pool. When the pool reaches this size, all

connections return to the server. The default is 50.

To obtain the value, call getIfxCPMMaxPoolSize().

To set the value, call setIfxCPMMaxPoolSize(int max).

v IFMX_CPM_AGELIMIT lets you specify the time, in seconds, that a free

connection is kept in the free connection pool.

The default is -1, which means that the free connections are retained until

the client terminates.

To obtain the value, call getIfxCPMAgeLimit().

To set the value, call setIfxCPMAgeLimit(long limit).

v IFMX_CPM_MIN_AGELIMIT lets you specify the additional time, in

seconds, that a connection in the free connection pool is retained when no

connection requests have been received.

Use this setting to reduce resources held in the pool when there are

expected periods in which no connection requests will be made. A value of

0 indicates that no additional time is given to a connection in the minimum

pool: the connection is released to the server whenever it exceeds

IFMX_CPM_AGELIMIT.

The default is -1, which means that a minimum number of free connections

is retained until the client terminates.

To obtain the value, call getIfxCPMMinAgeLimit().

To set the value, call setIfxCPMAgeMinLimit(long limit).

v IFMX_CPM_SERVICE_INTERVAL lets you specify the pool service

frequency, in milliseconds.

Pool service activity includes adding free connections (if the number of free

connections falls below the minimum value) and removing free connections.

The default is 50.

To obtain the value, call getIfxCPMServiceInterval().

To set the value, call setIfxCPMServiceInterval (long interval).

v IFMX_CPM_ENABLE_SWITCH_HDRPOOL lets you specify whether to

allow automatic switching between the primary and secondary connection

pools of an HDR database server pair.

Set this property if your application relies on High-Availability Data

Replication with connection pooling. The default is false.

To obtain the value, call getIfxCPMSwitchHDRPool().

To set the value, call setIfxCPMSwitchHDRPool(boolean flag).

A demonstration program is available in the connection-pool directory within

the demo directory where your JDBC driver is installed. For connection

Chapter 7. Tuning and Troubleshooting 7-7

pooling with HDR, a demonstration program is available in the hdr directory

within the demo directory. For details about the files, see Appendix A.

Some of these properties overlap Sun JDBC 3.0 properties. The following table

lists the Sun JDBC 3.0 properties and their Informix equivalents.

 Sun JDBC Property

Name Informix Property Name Notes

initialPoolSize IFMX_CPM_INIT_POOLSIZE

maxPoolSize IFMX_CPM_MAX_POOLSIZE For maxPoolSize, 0 indicates

no maximum size. For

IFMX_CPM_MAX_

POOLSIZE, you must specify

a value.

minPoolSize IFMX_CPM_MIN_POOLSIZE

maxIdleTime IFMX_CPM_AGELIMIT For maxIdleTime, 0 indicates

no time limit. For

IFMX_CPM_

AGELIMIT, -1 indicates no

time limit.

The following Sun JDBC 3.0 properties are not supported:

v maxStatements

v propertyCycle

Using High-Availability Data Replication with Connection Pooling

IBM Informix JDBC Driver implementation of connection pooling provides

the ability to pool connections with database servers in an HDR pair:

v The primary pool contains connections to the primary server in an HDR

pair.

v The secondary pool contains connections to the secondary server in an

HDR pair.

You do not have to change application code to take advantage of connection

pooling with HDR. Set the IFMX_CPM_ENABLE_SWITCH_HDRPOOL

property to true to allow switching between the two pools. When switching is

allowed, the Connection Pool Manager validates and activates the appropriate

connection pool.

When the primary server fails, the Connection Pool Manager activates the

secondary pool. When the secondary pool is active, the Connection Pool

Manager validates the state of the pool to check if the primary server is

7-8 IBM Informix JDBC Driver Programmer’s Guide

running. If the primary server is running, the Connection Pool Manager

switches new connections to the primary server and sets the active pool to the

primary pool.

If IFMX_CPM_ENABLE_SWITCH_HDRPOOL is set to false, you can force

switching to the other connection pool by calling the

activateHDRPool_Primary() or activateHDRPool_Secondary() methods:

public void activateHDRPool_Primary(void) throws SQLException

public void activateHDRPool_Secondary(void) throws SQLException

The activateHDRPool_Primary() method switches the primary connection

pool to be the active connection pool. The activateHDRPool_Secondary()

method switches the secondary connection pool to be the active pool.

You can use the isReadOnly(), isHDREnabled(), and getHDRtype() methods

with connection pooling (see “Checking for Read-Only Status” on page 2-24).

A demonstration program is available in the hdr directory within the demo

directory where IBM Informix JDBC Driver is installed. For details about the

files, see Appendix A.

Cleaning Pooled Connections

You can alter connections from their original, default properties by setting

database properties, such as AUTOCOMMIT and TRANSACTION

ISOLATION. When a connection is closed, these properties revert to their

default values. However, a pooled connection does not automatically revert to

default properties when it is returned to the pool.

In IBM Informix JDBC Driver, you can call the scrubConnection() method to:

v Reset the database properties and connection level properties to the default

values.

v Close open cursors and transactions.

v Retain all statements.

This now enables the application server to cache the statements, and it can be

used across applications and sessions to provide better performance for

end-user applications.

The signature of the scrubConnection() method is:

public void scrubConnection() throws SQLException

The following example demonstrates how to call scrubConnection():

try

 {

 IfmxConnection conn = (IfmxConnection)myConn;

Chapter 7. Tuning and Troubleshooting 7-9

conn.scrubConnection();

 }

catch (SQLException e)

 {

 e.printStackTrace();

 }

The following method verifies whether a call to scrubConnection() has

released all statements:

public boolean scrubConnectionReleasesAllStatements()

Managing Connections

The following table contrasts different implementations of the

connection.close() and scrubConnection() methods when they are in

connection pool setup or not.

Connection Pooling Status

Behavior with

connection.close() Method

Behavior with

scrubconnection() Method

Non-connection pool setup Closes database

connection, all associated

statement objects, and

their result sets

Connection is no longer

valid.

Returns connection to

default state, keeps

opened statements, but

closes result sets

Connection is still valid.

Releases resources

associated with result sets

only.

Connection Pool with

Informix Implementation

Closes connection to the

database and reopens it to

close any statements

associated with the

connection object and reset

the connection to its

original state Connection

object is then returned to

the connection pool and is

available when requested

by a new application

connection.

Returns a connection to

the default state and keeps

all open statements, but

closes all result sets.

Calling this method is not

recommended here.

Connection Pool with

AppServer Implementation

Defined by user’s

connection pooling

implementation

Returns connection to

default state and retains

opened statements, but

closes result sets

7-10 IBM Informix JDBC Driver Programmer’s Guide

Appendix A. Sample Code Files

This appendix contains tables that list and briefly describe the code examples

provided with the client-side version of IBM Informix JDBC Driver.

Most of these examples can be adapted to work with server-side JDBC by

changing the syntax of the connection URL. For more information, see

“Format of Database URLs” on page 2-7.

The examples in the tools/udtudrmgr directory and the demo/xml directory

are for client-side JDBC only in the 2.2 release.

Summary of Available Examples

The examples are provided in two directories:

v The demo directory where your IBM Informix JDBC Driver software is

installed

v The tools directory beneath the demo directory

Examples in the demo Directory

Each example has its own subdirectory. Most of the directories include a

README file that describes the examples and how to run them.

Directory Type of Examples

basic Examples that show common database

operations

clob-blob Examples that use smart large objects

udt-distinct Examples that use opaque and DISTINCT data

types (there are additional examples using

opaque types in “Examples in the udtudrmgr

Directory” on page A-10)

complex-types Examples that use row and collection types

rmi An example using Remote Method Invocation

stores7 The stores7 demonstration database

pickaseat An example using DataSource objects

connection-pool Examples that illustrate using a connection

pool

© Copyright IBM Corp. 1996, 2004 A-1

proxy Examples that illustrate using an HTTP proxy

server

xml Examples that illustrate storing and retrieving

XML documents

hdr Examples that illustrate using

High-Availability Data Replication

Examples in the basic Directory

The following table lists the files in the basic directory.

Demo Program Name Description

autofree.java Shows how to use the IFX_AUTOFREE

environment variable

BatchUpdate.java Shows how to send batch updates to the

server

ByteType.java Shows how to insert into and select from a

table that contains a column of data type

BYTE

CallOut1.java Executes a C function that has an OUT

parameter using CallableStatement methods

CallOut2.java Executes an SPL function that has an OUT

parameter using CallableStatement methods

CallOut3.java Executes a C function that has a Boolean OUT

parameter using the

IfmxCallableStatement.IfxRegisterOut

Parameter() method

CallOut4.java Executes a C function that has a CLOB type

OUT parameter and uses the

IfmxCallableStatement.hasOutParameter()

method

CreateDB.java Creates a database called testDB

DBCENTURYSelect.java Uses the getString() method to retrieve a date

string representation in which the four-digit

year expansion is based on the DBCENTURY

property value

DBCENTURYSelect2.java Retrieves a date string representation in which

the four-digit year expansion is based on the

DBCENTURY property value using

string-to-binary conversion

A-2 IBM Informix JDBC Driver Programmer’s Guide

Uses the getDate() method to build a

java.sql.Date object upon which the date

string representation is based

DBCENTURYSelect3.java Retrieves a date string representation in which

the four-digit year expansion is based on the

DBCENTURY property value using

string-to-binary conversion

 Uses the getTimestamp() method to build a

java.sql.Timestamp object upon which the

date string representation is based

DBCENTURYSelect4.java Retrieves a date string representation in which

the four-digit year expansion is based on the

DBCENTURY property value using

binary-to-string conversion

 Uses the getDate() method to build a

java.sql.Date object upon which the date

string representation is based

DBCENTURYSelect5.java Retrieves a date string representation in which

the four-digit year expansion is based on the

DBCENTURY property value using

binary-to-string conversion

 Uses the getTimestamp() method to build a

java.sql.Timestamp object upon which the

date string representation is based

DBConnection.java Creates connections to both a database and a

database server

DBDATESelect.java Shows how to retrieve a date object and a

date string representation from the database

based on the DBDATE property value from

the URL string

DBMetaData.java Shows how to retrieve information about a

database with the DatabaseMetaData interface

DropDB.java Drops a database called testDB

ErrorHandling.java Shows how to retrieve RSAM error messages

GLDATESelect.java Shows how to retrieve a date object and a

date string representation from the database

based on the GL_DATE property value from

the URL string

Appendix A. Sample Code Files A-3

Intervaldemo.java Shows how to insert and select Informix

interval data

LOCALESelect.java Shows how to retrieve a date object and a

date string representation from the database

based on the CLIENT_LOCALE property

value from the URL string

locmsg.java Shows how to use Informix extension

methods that support localized error messages

MultiRowCall.java Shows how to return multiple rows in a

stored procedure call

OptimizedSelect.java Shows how to use the FET_BUF_SIZE

environment variable to adjust the

IBM Informix JDBC Driver tuple buffer size

optofc.java Shows how to use the OPTOFC environment

variable

PropertyConnection.java Shows how to specify connection environment

variables via a property list

RSMetaData.java Shows how to retrieve information about a

result set with the ResultSetMetaData

interface

ScrollCursor.java Shows how to retrieve a result set with a

scroll cursor

Serial.java Shows how to insert and select Informix

SERIal and SERIal8 data

SimpleCall.java Shows how to call a stored procedure

SimpleConnection.java Shows how to connect to a database or

database server

SimpleSelect.java Shows how to send a simple SELECT query to

the database server

TextConv.java Shows how to convert a file from the client

code set to Unicode and then from Unicode to

the database code set

TextType.java Shows how to insert into and select from a

table that contains a column of data type

TEXT

UpdateCursor1.java Shows how to create an updatable scroll

cursor using a ROWID column in the query

A-4 IBM Informix JDBC Driver Programmer’s Guide

UpdateCursor2.java Shows how to create an updatable scroll

cursor using a SERIAL column in the query

UpdateCursor3.java Shows how to create an updatable scroll

cursor using a primary key column in the

query

Examples in the clob-blob Directory

The following table lists the files in the clob-blob directory.

Demo Program Name Description

demo1.java Shows how to create two tables with BLOB

and CLOB columns and compare the data

demo2.java Shows how to create one table with BYTE and

TEXT columns and a second table with BLOB

and CLOB columns and how to compare the

data

demo3.java Shows how to create one table with BLOB and

CLOB columns and a second table with BYTE

and TEXT columns and how to compare the

data

demo4.java Shows how to create two tables with BYTE

and TEXT columns and compare the data

demo5.java Shows how to store data from a file into a

BLOB table column

demo6.java Shows how to read a portion of the data in a

smart large object

demo_11.java Shows how to read data from a file into a

buffer and write the contents of the buffer into

a smart large object

demo_13.java Shows how to write data into a smart large

object and then insert the smart large object

into a table

demo_14.java Shows how to fetch smart large object data

from a table

Examples in the udt-distinct Directory

The following table lists the files in the udt-distinct directory (there are

additional examples using opaque types in “Examples in the udtudrmgr

Directory” on page A-10.)

Demo Program Name Description

Appendix A. Sample Code Files A-5

charattrUDT.java Shows how to implement an opaque

fixed-length type using SQLData

createDB.java Creates a database that the other udt-distinct

demonstration files use

createTypes.java Shows how to create opaque and distinct

types in the database

distinct_d1.java Shows how to create a distinct type without

using SQLData

distinct_d2.java Shows how to create a second distinct type

without using SQLData

dropDB.java Drops the database that the other udt-distinct

demonstration files use

largebinUDT.java Shows how to implement an opaque type

(smart large object embedded) using SQLData

manualUDT.java Shows how to implement an opaque type that

allows you to change the position in the input

stream

myMoney.java Shows how to implement a distinct type using

SQLData

udt_d1.java Shows how to create a fixed-length opaque

type

udt_d2.java Shows how to create an opaque type with an

embedded smart large object

udt_d3.java Shows how to create an opaque type that

allows you to change the position in the input

stream

Examples in the complex-types Directory

The following table lists the files in the complex-types directory.

Demo Program Name Description

createDB.java Creates a database with named rows

list1.java Inserts and selects a simple collection using

both the java.sql.Array and

java.util.Collection classes

list2.java Inserts and selects a collection with a nested

row element

A-6 IBM Informix JDBC Driver Programmer’s Guide

Uses both the java.sql.Array and

java.util.Collection classes for the collection

and both the SQLData and Struct interfaces

for the nested row

r1_t.java Defines the SQLData class for named row r1_t

r2_t.java Defines the SQLData class for named row r2_t

GenericStruct.java Instantiates a java.sql.Struct object for

inserting into named or unnamed rows

row1.java Inserts and selects a simple named row using

both the SQLData and Struct interfaces

row2.java Inserts and selects a named row with a nested

collection using both the SQLData and Struct

interfaces

 The SQLData interface uses the Informix

IfmxComplexSQLOutput. writeObject() and

IfmxComplexSQLOutput.readObject()

extension methods to write and read the

nested collection.

row3.java Inserts and selects an unnamed row with a

nested collection

fullname.java Contains the SQLData class for the named

row fullname_t

 Used by the demo1.java and demo2.java files

person.java Contains the SQLData class for the named

row person_t Used by the demo1.java and

demo2.java files

demo1.java Fetches a named row into an SQLData object

demo2.java Inserts an SQLData object into a named row

column

demo3.java Fetches an unnamed row column into a Struct

object

demo4.java Inserts a Struct object into a named row

column

demo5.java Fetches an Informix SET column into a

java.util.HashSet object

demo6.java Fetches an Informix SET column into a

java.util.TreeSet object

Appendix A. Sample Code Files A-7

A customized type mapping is provided to

override the default.

demo7.java Inserts a java.util.HashSet object into an

Informix SET column

demo8.java Fetches an Informix SET column into a

java.sql.Array object

dropDB.java Drops the database

Examples in the proxy Directory

The following table lists the files in the proxy directory. A README file in the

directory contains setup information.

Demo Program Name Description

ProxySelect.java (application) Creates a sample database and

connects to it using four scenarios:

v Connection with a proxy server and no

LDAP server

v Connection with an LDAP server and no

proxy server

v Connection using an sqlhosts file Direct

connection (no proxy servlet, sqlhosts file,

or LDAP server)

proxy.sh (shell script) Launches ProxySelect.java. To

run the script (and the demo), type:

proxy.sh -d ProxySelect -s 2

proxy.java (applet) Performs the same operations as

ProxySelect.java from an applet. To run the

applet, type:

appletviewer proxy.html

proxy.html HTML file for proxy.java

ifmx.conf Sample LDAP configuration file

ifmx.ldif Sample LDAP ldif file

Examples in the connection-pool Directory

The following table lists the files in the connection-pool directory. A README

file in the directory contains setup information.

Demo Program Name Description

AppSimulator.java Simulates multiple client threads making

DataSource connections

A-8 IBM Informix JDBC Driver Programmer’s Guide

SetupDB.java Creates and populates a sample database. See

the comments at the beginning of the code for

a sample run command

DS_Pool.prop Lists properties for a connection-pooling

application

myCPDS.prop Lists properties for a connection-pooling

application, with the optional tuning

parameters included

DS_no_Pool.prop Lists properties for an application without

connection pooling

Register.java Registers a DataSource object with a JNDI

Name registry

 A sample run command is:

java Register DS_no_Pool /tmp

runDemo (Shell script) Creates and populates a sample

database; registers the data sources

DS_no_Pool and DS_Pool; and runs an

application to simulate multiple client threads

that connect to the sample database

Examples in the xml Directory

The following table lists the files in the xml directory.

Demod Program Name Description

CreateDB.java Creates a sample database

makefile Compiles the examples

myHandler.java Sample class of callback routines for the SAX

parser

sample1.xml Simple XML slide

sample2.xml Sample set of XML slides

sample2.dtd Document-type definition for sample1.xml

xmldemo1.java Uses XMLtoString(), getInputSource(), and

myHandler.java to convert the XML in

sample1.xml to an InputSource object and

then parses it using the SAX parser

Examples In the hdr Directory

The following table lists the files in the hdr directory. A README file in the

directory contains setup information.

Appendix A. Sample Code Files A-9

Demo Program Name Description

SetupDB.java Creates a sample database and table

Register.java Registers the DS_no_Pool and DS_Pool

DataSource objects with a JNDI Name

registry. A sample run command is:

java Register DS_no_Pool /tmp

AppSimulator.java Simulates High-Availability Data Replication

redirection for pooled and nonpooled

connections made with the

DataSource.getConnection() method

HdrSimpleConnect.java Shows how to implement HDR redirection

with the DriverManager.getConnection()

method

Examples in the tools Directory

The tools directory includes the following subdirectories:

v The udtudrmgr directory contains examples that use UDT and UDR

Manager to create opaque types and UDRs.

v The classgenerator directory contains sample output files of the

ClassGenerator utility.

Examples in the udtudrmgr Directory

The following table lists the files in the udtudrmgr directory. A README file

in the directory contains setup information.

Demo Program Name Description

createDB.java Creates a sample database

dropDB.java Drops the sample database

Circle.java (Demo application 1) Implements a Java class,

using the default Input and Output functions,

to be converted to a Java opaque type

PlayWithCircle.java (Demo application 1) Uses the Circle opaque

type in a client application

Circle2.java (Demo application 2) Implements a Java class,

with user-supplied Input and Output

functions, to be converted to a Java opaque

type

PlayWithCircle2.java (Demo application 2) Uses the Circle2 opaque

type in a client application

MyCircle.java (Demo application 3) Creates a fixed-length

opaque type without a preexisting Java class

A-10 IBM Informix JDBC Driver Programmer’s Guide

Group1.java (Demo application 4) Maps methods in an

existing Java class to Java UDRs

PlayWithGroup1.java (Demo application 4) Uses the UDRs from

Group1.java in a client application

Appendix A. Sample Code Files A-11

A-12 IBM Informix JDBC Driver Programmer’s Guide

Appendix B. DataSource Extensions

This appendix lists the Informix extensions to standard JDBC classes:

v The IfxDataSource class, which implements the DataSource interface

v The IfxConnectionPoolDataSource class, which implements the

ConnectionPoolDataSource interface

For information about how and why to use a DataSource or

ConnectionPoolDataSource object, see the JDBC 3.0 API provided by Sun

Microsystems, available from the following Web site: http://java.sun.com.

IBM Informix JDBC Driver provides extensions for the following purposes:

v Reading and writing properties

v Getting and setting standard properties

v Getting and setting Informix connection properties

v Getting and setting Connection Pool DataSource properties

Reading and Writing Properties

The following methods are defined in the extended DataSource interface for

reading and writing properties. These methods allow you to define a new

DataSource object by editing the property list of an existing DataSource

object.

public Properties getDsProperties();

Returns the Property object contained in the DataSource object

public void addProp(String key, Object value);

Adds a property to the property list

The key parameter specifies which property is to be added.

The value parameter is the value of the property.

public Object getProp(String key);

Gets the value of a property from the property list

The key parameter specifies which property is to be retrieved.

public void removeProperty(String key);

Removes a property from the property list

© Copyright IBM Corp. 1996, 2004 B-1

http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/index.html

The key parameter specifies which property is to be removed.

public void readProperties(InputStream in) throws IOException;

Reads properties into a DataSource object from an InputStream object

The in parameter is the InputStream object from which the properties are to

be read.

An exception occurs when an I/O error is encountered while reading from the

input stream.

public void writeProperties(OutputStream out) throws IOException;

Writes the properties of the DataSource object to an OutputStream object

The out parameter is the OutputStream object to which the properties are to

be written.

An exception occurs when an I/O error is encountered while writing to the

output stream.

Getting and Setting Standard Properties

The following methods are defined in the extended DataSource interface for

getting and setting properties defined in the JDBC 3.0 API from Sun

Microsystems.

Property getXXX() and setXXX() Method Signatures

portNumber

public int getPortNumber();

public void setPortNumber(int value);

databaseName

public String getDatabaseName();

public void setDatabaseName(String value);

serverName

public String getServerName();

public void setServerName(String value);

user

public String getUser();

public void setUser(String value);

password

public String getPassword();

public void setPassword(String value);

description

public String getDescription();

public void setDescription(String value);

B-2 IBM Informix JDBC Driver Programmer’s Guide

dataSourceName

public String getDataSourceName();

public void setDataSourceName(String value);

 The networkProtocol and roleName properties are not supported by

IBM Informix JDBC Driver.

Getting and Setting Informix Connection Properties

The following methods are defined in the extended DataSource interface for

getting and setting Informix environment variable values.

 Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

CLIENT_LOCALE public String getIfxCLIENT_LOCALE()

public void setIfxCLIENT_LOCALE(String value)

CSM public String getIfxCSM()

public void setIfxCSM (String csm)

DBANSIWARN public boolean isIfxDBANSIWARN()

public void setIfxDBANSIWARN(boolean value)

DBCENTURY public String getIfxDBCENTURY()

public void setIfxDBCENTURY(String value)

DBDATE public String getIfxDBDATE()

public void setIfxDBDATE(String value)

DB_LOCALE public String getIfxDB_LOCALE()

public void setIfxDB_LOCALE(String value)

DBSPACETEMP public String getIfxDBSPACETEMP()

public void setIfxDBSPACETEMP(String value)

DBTEMP public String getIfxDBTEMP()

public void setIfxDBTEMP(String value)

DBUPSPACE public String getIfxDBUPSPACE()

public void setIfxDBUPSPACE(String value)

DELIMIDENT public boolean isIfxDELIMIDENT()

public void setIfxDELIMIDENT(boolean value)

ENABLE_CACHE_TYPE public boolean isIfxENABLE_CACHE_TYPE()

public void setIfxENABLE_CACHE_TYPE(boolean value)

ENABLE_HDRSWITCH public booleangetIfxENABLE_HDRSWITCH()

public void setIfxENABLE_HDRSWITCH(boolean value)

FET_BUF_SIZE public int getIfxFET_BUF_SIZE()

public void setIfxFET_BUF_SIZE(int value)

GL_DATE public String getIfxGL_DATE()

public void setIfxGL_DATE(String value)

Appendix B. DataSource Extensions B-3

Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

IFX_AUTOFREE public boolean isIfxIFX_AUTOFREE()

public void setIfxIFX_AUTOFREE(boolean value)

IFX_CODESETLOB public int getIfxIFX_CODESETLOB()

public void setIfxIFX_CODESETLOB(int codesetlobFlag)

IFX_DIRECTIVES public String getIfxIFX_DIRECTIVES()

public void setIfxIFX_DIRECTIVES(String value)

IFX_EXTDIRECTIVES public String getIfxIFX_EXTDIRECTIVES()

public void setIfxIFX_EXTDIRECTIVES(String value)

IFX_GET_SMFLOAT_AS_

FLOAT

public boolean getIfxIFX_GET_SMFLOAT_AS_FLOAT()

public voidsetIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT(boolean value)

IFX_ISOLATION_LEVEL public String getIfxIFX_ISOLATION_LEVEL()

public void setIfxIFX_ISOLATION_LEVEL (String iso_level)

IFX_LOCK_MODE_WAIT public int getIfxIFX_LOCK_MODE_WAIT()

public void setIfxIFX_LOCK_MODE_WAIT (int lock_time)

IFX_SET_FLOAT_AS_

SMFLOAT

public boolean getIfxIFX_SET_FLOAT_AS_SMFLOAT()

public void setIfxIFX_SET_FLOAT_AS_SMFLOAT(boolean value)

IFXHOST public String getIfxIFXHOST()

public void setIfxIFXHOST(String value)

IFXHOST_SECONDARY public String getIfxIFXHOST_SECONDARY()

public void setIfxIFXHOST_SECONDARY(String value)

IFX_USEPUT public boolean isIfxIFX_USEPUT()

public void setIfxIFX_USEPUT(boolean value)

IFX_XASPEC public String getIfxIFX_XASPEC() (returns y or n)

public void IfxIFX_XASPEC(String XASPEC_flag) (only y, Y, n, or N are

valid)

IFX_XASTDCOMPLIANCE_

XAEND

public int getIfxIFX_XASTDCOMPLIANCE_XAEND()

public void setIfxIFX_XASTDCOMPLIANCE_

XAEND(int value)

INFORMIXCONRETRY public int getIfxINFORMIXCONRETRY()

public void setIfxINFORMIXCONRETRY(int value)

INFORMIXCONTIME public int getIfxINFORMIXCONTIME()

public void setIfxINFORMIXCONTIME(int value)

INFORMIXOPCACHE public String getIfxINFORMIXOPCACHE()

public void setIfxINFORMIXOPCACHE(String value)

INFORMIXSERVER_

SECONDARY

public String getIfxINFORMIXSERVER_SECONDARY()

public void setIfxINFORMIXSERVER_SECONDARY(String value)

INFORMIXSTACKSIZE public int getIfxINFORMIXSTACKSIZE()

public void setIfxINFORMIXSTACKSIZE(int value)

JDBCTEMP public String getIfxJDBCTEMP()

public void setIfxJDBCTEMP(String value)

B-4 IBM Informix JDBC Driver Programmer’s Guide

Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

LDAP_IFXBASE public String getIfxLDAP_IFXBASE()

public void setIfxLDAP_IFXBASE(String value)

LDAP_PASSWD public String getIfxLDAP_PASSWD()

public void setIfxLDAP_PASSWD(String value)

LDAP_URL public String getIfxLDAP_URL()

public void setIfxLDAP_URL(String value)

LDAP_USER public String getIfxLDAP_USER()

public void setIfxLDAP_USER(String value)

LOBCACHE public int getIfxLOBCACHE()

public void setIfxLOBCACHE(int value)

NEWCODESET public String getIfxNEWCODESET()

public void setIfxNEWCODESET(String value)

NEWLOCALE public String getIfxNEWLOCALE()

public void setIfxNEWLOCALE(String value)

NEWNLSMAP public String getIfxNEWNLSMAP()

public void setIfxNEWNLSMAP (String value)

NODEFDAC public String getIfxNODEFDAC()

public void setIfxNODEFDAC(String value)

OPT_GOAL public String getIfxOPT_GOAL()

public void setIfxOPT_GOAL(String value)

OPTCOMPIND public String getIfxOPTCOMPIND()

public void setIfxOPTCOMPIND(String value)

OPTOFC public String getIfxOPTOFC()

public void setIfxOPTOFC(String value)

PATH public String getIfxPATH()

public void setIfxPATH(String value)

PDQPRIORITY public String getIfxPDQPRIORITY()

public void setIfxPDQPRIORITY(String value)

PLCONFIG public String getIfxPLCONFIG()

public void setIfxPLCONFIG(String value)

PLOAD_LO_PATH public String getIfxPLOAD_LO_PATH()

public void setIfxPLOAD_LO_PATH(String value)

PORTNO_SECONDARY public String getIfxPORTNO_SECONDARY()

public void setIfxPORTNO_SECONDARY(int value)

PROTOCOLTRACE public int getIfxPROTOCOLTRACE()

public void setIfxPROTOCOLTRACE(int value)

PROTOCOLTRACEFILE public String getIfxPROTOCOLTRACEFILE()

public void setIfxPROTOCOLTRACEFILE(String value)

Appendix B. DataSource Extensions B-5

Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

PROXY public String getIfxPROXY()

public void setIfxPROXY(String value)

PSORT_DBTEMP public String getIfxPSORT_DBTEMP()

public void setIfxPSORT_DBTEMP(String value)

PSORT_NPROCS public String getIfxPSORT_NPROCS()

public void setIfxPSORT_NPROCS(String value)

SECURITY public String getIfxSECURITY()

public void setIfxSECURITY(String value)

SQLH_FILE public String getIfxSQLH_FILE()

public void setIfxSQLH_FILE(String value)

SQLH_TYPE public String getIfxSQLH_TYPE()

public void setIfxSQLH_TYPE(String value)

STMT_CACHE public String getIfxSTMT_CACHE()

public void setIfxSTMT_CACHE(String value)

TRACE public int getIfxTRACE()

public void setIfxTRACE(int value)

TRACEFILE public String getIfxTRACEFILE()

public void setIfxTRACEFILE(String value)

USEV5SERVER public boolean isIfxUSEV5SERVER()

public void setIfxUSEV5SERVER(boolean value)

Getting and Setting Connection Pool DataSource Properties

The code you write to use a ConnectionPoolDataSource object is the same as

the code you write to use a DataSource object. Additional tuning parameters

let you or your database administrator control some aspects of connection

pool management with the Connection Pool Manager. These are more fully

described in “Using a Connection Pool” on page 7-5. The following table

summarizes them.

B-6 IBM Informix JDBC Driver Programmer’s Guide

Property getXXX() and setXXX() Method Signatures

IFMX_CPM_ENABLE_SWITCH_

HDRPOOL

public void setIfxCPMSwitchHDRPool (boolean flag)

public int getIfxCPMSwitchHDRPool()

IFMX_CPM_INIT_POOLSIZE public void setIfxCPMInitPoolSize (int init)

public int getIfxCPMInitPoolSize()

IFMX_CPM_MAX_CONNECTIONS public void setIfxCPMMaxConnections (int limit)

public int getIfxCPMMaxConnections()

IFMX_CPM_MIN_POOLSIZE public void setIfxCPMMinPoolSize (int min)

public int getIfxCPMMinPoolSize()

IFMX_CPM_MAX_POOLSIZE public void setIfxCPMMaxPoolSize (int max)

public int getIfxCPMMaxPoolSize()

IFMX_CPM_MIN_AGELIMIT public void setIfxCPMMinAgeLimit (long limit)

public long getIfxCPMMinAgeLimit()

IFMX_CPM_MAX_AGELIMIT public void setIfxCPMMaxAgeLimit (long limit)

public long getIfxCPMMaxAgeLimit()

IFMX_CPM_SERVICE_INTERVAL public void setIfxCPMServiceInterval (long interval)

public long getIfxCPMServiceInterval()

Appendix B. DataSource Extensions B-7

B-8 IBM Informix JDBC Driver Programmer’s Guide

Appendix C. Mapping Data Types

This appendix discusses mapping issues between data types defined in a Java

program and the data types supported by the Informix database server. It

covers the following topics:

v “Data Type Mapping Between Informix and JDBC Data Types,” next

v “Data Type Mapping for PreparedStatement.setXXX() Extensions” on page

C-5

v “Data Type Mapping for ResultSet.getXXX() Methods” on page C-14

v “Data Type Mapping for UDT Manager and UDR Manager” on page C-16

Data Type Mapping Between Informix and JDBC Data Types

Because there are variations between the SQL data types supported by each

database vendor, the JDBC API defines a set of generic SQL data types in the

class java.sql.Types. Use these JDBC API data types to reference generic SQL

types in your Java programs that use the JDBC API to connect to Informix

databases.

The following table shows the Informix data type to which each JDBC API

data type maps.

JDBC API Data Type Informix Data Type

BIGINT INT8

BINARY BYTE

BIT

1 BOOLEAN

REF Not supported

CHAR CHAR(n)

DATE DATE

DECIMAL DECIMAL

DOUBLE FLOAT

FLOAT FLOAT2

INTEGER INTEGER

LONGVARBINARY BYTE or BLOB

LONGVARCHAR TEXT or CLOB

NUMERIC DECIMAL

© Copyright IBM Corp. 1996, 2004 C-1

NUMERIC MONEY

REAL SMALLFLOAT

SMALLINT SMALLINT

TIME DATETIME HOUR TO SECOND2

TIMESTAMP DATETIME YEAR TO FRACTION(5)3

TINYINT SMALLINT

VARBINARY BYTE

VARCHAR VARCHAR(m,r)

BOOLEAN BOOLEAN

SMALLINT SMALLINT

1With Java 1.3.1, the JDBC 3.0 features are undefined. So if you are running

Java 1.3.1, then the JDBC type java.sql.Types.OTHER will still map to

BOOLEAN. If Java 1.4 is used, java.sql.Types.BOOLEAN maps to BOOLEAN.

2 This mapping is JDBC compliant. You can map the JDBC FLOAT data type

to the Informix SMALLFLOAT data type for backward compatibility by

setting the IFX_SET_FLOAT_AS_SMFLOAT environment variable to 1.

3 Informix DATETIME types are very restrictive and are not interchangeable.

For more information, see “Field Lengths and Date-Time Data” on page C-19.

Data Type Mapping Between Extended Types and Java and JDBC Types

The following table lists mappings between the extended data types

supported in IBM Informix Dynamic Server and the corresponding Java and

JDBC types.

C-2 IBM Informix JDBC Driver Programmer’s Guide

JDBC Type Java Object Type Informix Type

java.sql.Types.LONGVARCHAR java.sql.String

 java.io.inputStream

LVARCHAR

 IfxTypes.IFX_TYPE_LVARCHAR

java.sql.Types.JAVA_OBJECT java.sql.SQLData Opaque type

 IfxTypes.IFX_TYPE_UDTFIXED

 IfxTypes.IFX_TYPE_UDTVAR

java.sql.Types.LONGVARBINARY

 java.sql.Types.BLOB

java.sql.Blob

 java.io.inputStream

 byte[]

BLOB

 IfxTypes.IFX_TYPE_BLOB

java.sql.Types.LONGVARCHAR

 java.sql.Types.CLOB

java.sql.Clob

 java.io.inputStream

 java.lang.String

CLOB

 IfxTypes.IFX_TYPE_CLOB

java.sql.Types.LONGVARBINARY

 java.sql.Types.BLOB

java.io.inputStream

 java.sql.Blob byte[]

BYTE

 IfxTypes.IFX_TYPE_BYTE

java.sql.Types.LONGVARCHAR

 java.sql.Types.CLOB

java.io.InputStream

 java.sql.Clob java.sql.String

TEXT

 IfxTypes.IFX_TYPE_TEXT

java.sql.Types.JAVA_OBJECT

 java.sql.Types.STRUCT

java.sql.SQLData

 java.sql.Struct

Named row

 IfxTypes.IFX_TYPE_ROW

java.sql.Types.STRUCT java.sql.Struct Unnamed row

 IfxTypes.IFX_TYPE_ROW

java.sql.Types.ARRAY

 java.sql.Types.OTHER

java.sql.Array

 java.util.LinkedList

 java.util.HashSet

 java.util.TreeSet

set, multiset

 IfxTypes.IFX_TYPE_SET

 IfxTypes.IFX_TYPE_MULTISET

java.sql.Types.ARRAY

 java.sql.Types.OTHER

java.sql.Array

 java.util.ArrayList

 java.util.LinkedList

LIST

 IfxTypes.IFX_TYPE_LIST

Appendix C. Mapping Data Types C-3

A Java boolean object can map to an Informix smallint data type or an

Informix boolean data type. IBM Informix JDBC Driver attempts to map it

according to the column type. However, in cases such as PreparedStatement

host variables, IBM Informix JDBC Driver cannot access the column types, so

the mapping is somewhat limited. For more details on data type mapping,

refer to “Data Type Mapping for PreparedStatement.setXXX() Extensions” on

page C-5.

Data Type Mapping Between C Opaque Types and Java

To create an opaque type using Java, you can use the UDT and UDR Manager

facility. For more information, see Chapter 5, “Working with Opaque Types,”

on page 5-1.

All opaque data is stored in the database server table in a C struct, which is

made up of various DataBlade API types, as defined in the opaque type. (For

more information, see the IBM Informix: DataBlade API Programmer's Guide.)

The following table lists the mapping of DataBlade API types to their

corresponding Java types.

DataBlade API Type Java Type

MI_LO_HANDLE BLOB or CLOB

gl_wchar_t String

mi_boolean boolean

mi_char String

mi_char1 String

mi_date Date

mi_datetime TimeStamp

mi_decimal BigDecimal

mi_double_precision double

mi_int1 byte

mi_int8 long

mi_integer int

mi_interval Not supported

mi_money BigDecimal

mi_numeric BigDecimal

mi_real float

mi_smallint short

C-4 IBM Informix JDBC Driver Programmer’s Guide

mi_string String

mi_unsigned_char1 String

mi_unsigned_int8 long

mi_unsigned_integer int

mi_unsigned_smallint short

mi_wchar String

 The C struct may contain padding bytes. IBM Informix JDBC Driver

automatically skips these padding bytes to make sure the next data member is

properly aligned. Therefore, your Java objects do not have to take care of

alignment themselves.

Data Type Mapping for PreparedStatement.setXXX() Extensions

IBM Informix Dynamic Server introduces many extended data types. As a

result, there can be multiple mappings between a JDBC or Java data type and

the corresponding Informix data type.

For example, you can use PreparedStatement.setAsciiStream() to insert into

either a text column or a CLOB column. Similarly, you can also use

PreparedStatement.setBinaryStream() to insert into a byte column or a BLOB

column. Because the actual column information is not available to

IBM Informix JDBC Driver at all times, there can be ambiguity for the driver

when it maps data types.

Normally, with INSERT, SELECT, or DELETE statements, the column

information is available to the driver, so the driver can determine how the

data can be sent to the database server.

However, when the data is referenced in an UPDATE statement or inside a

WHERE clause, IBM Informix JDBC Driver does not have access to the

column information. In those cases, unless you use the Informix extensions,

the driver maps those columns using the corresponding Informix data types

listed in the first table in “Data Type Mapping Between Informix and JDBC

Data Types” on page C-1. For the PreparedStatement.setAsciiStream()

method, the driver tries to map to a text data type, and for the

PreparedStatement.setBinaryStream() method, it tries to map to a byte data

type.

Using the Mapping Extensions

To direct the driver to map to a certain data type (so there is no ambiguity in

UPDATE statements and WHERE clauses), you can use extensions to the

PreparedStatement.setXXX() methods. The only data types that might have

ambiguity are boolean, lvarchar, text, byte, BLOB, and CLOB.

Appendix C. Mapping Data Types C-5

To use these extended methods, you must cast your PreparedStatement

references to IfmxPreparedStatement. For example, the following code casts

the statement variable p_stmt to IfmxPreparedStatement to call the

IfxSetObject() method and insert the contents of a file as a large object of

type CLOB. IfxSetObject() is defined as I:

public void IfxSetObject(int i, Object x, int scale, int ifxType)

 throws SQLException

public void IfxSetObject(int i, Object x, int ifxType) throws

 SQLexception

The code is:

File file = new File("sblob_06.dat");

int fileLength = (int)file.length();

byte[] buffer = new byte[fileLength];

FileInputStream fin = new FileInputStream(file);

fin.read(buffer,0,fileLength);

String str = new String(buffer);

writeOutputFile("Prepare");

PreparedStatement p_stmt = myConn.prepareStatement

 ("insert into sblob_t20(c1) values(?)");

writeOutputFile("IfxSetObject");

((IfmxPreparedStatement)p_stmt).IfxSetObject(1,str,30,IfxTypes.IFX

 _TYPE_CLOB);

For the IfmxPreparedStatement.IfxSetObject extension, you cannot simply

overload the method signature with an added ifxType parameter, because

such overloading creates method ambiguity. You must name the method to

IfxSetObject instead.

Using the Extensions for Opaque Types

The extensions for processing opaque types allow your application to specify

the return type to which the database server should cast the opaque type

before returning it to the client. This is known as prebinding the return value.

The methods are:

v setBindColType(), which allows applications to specify the output type of

result-set values using standard JDBC data types from java.sql.Types

v setBindColIfxType(), which allows applications to specify the output type

of result-set values using Informix data types from

com.informix.lang.IfxTypes

For more information about the available types, see “Using the IfxTypes

Class” on page C-10.

v clearBindColType(), which resets values set through the previous two

methods

In the following sections:

C-6 IBM Informix JDBC Driver Programmer’s Guide

v The colIndex parameter specifies the column: 1 is the first column, 2 the

second, and so forth

v The sqltype parameter is a value from java.sql.Types: for example,

Types.INTEGER.

v The ifxtype parameter is a value from IfxTypes: for example,

IfxTypes.IFX_TYPE_DECIMAL.

setBindColType() Methods: The methods are as follows:

public void setBindColType(int colIndex, int sqltype) throws SQLException;

public void setBindColType(int colIndex, int sqltype, int scale)

 throws SQLException;

public void setBindColType(int colIndex, int sqltype, String name)

 throws SQLException;

The first overloaded method allows applications to specify the output type to

be java.sql.DECIMAL or java.sql.NUMERIC; the scale parameter specifies the

number of digits to the right of the decimal point. The second overloaded

method allows applications to specify the output type to be java.sql.STRUCT,

java.sql.ARRAY, java.sql.DISTINCT, or java.sql.JAVA_OBJECT by assigning

one of these values to the name parameter.

setBindColIfxType() Methods: The methods are as follows:

public void setBindColIfxType(int colIndex, int ifxtype) throws SQLException;

public void setBindColIfxType(int colIndex, int ifxtype, int scale)

 throws SQLException;

public void setBindColIfxType(int colIndex, int ifxtype, String name)

 throws SQLException;

The first overloaded method allows applications to specify the output type to

be IFX_TYPE_DECIMAL or IFX_TYPE_NUMERIC; the scale parameter specifies the

number of digits to the right of the decimal point. The second overloaded

method allows applications to specify the output type to be IFX_TYPE_LIST,

IFX_TYPE_ROW, IFX_TYPE_MULTISET, IFX_TYPE_SET, IFX_TYPE_UDTVAR, or

IFX_TYPE_UDTFIXED by assigning one of these values to the name parameter.

clearBindColType() Method: The method is as follows:

public void clearBindColType() throws SQLException;

Prebinding Example: The following code from the udt_bindCol.java sample

program prebinds an opaque type to an Informix VARCHAR and then to a

standard Java Integer type. The table used in this example has one int column

and one opaque type column and is defined as follows:

create table charattr_tab (int_col int, charattr_col charattr_udt)

The code to select and prebind the opaque type in the charattr_col column is

as follows:

Appendix C. Mapping Data Types C-7

String s = "select int_col, charattr_col as cast_udt_to_lvc, " +

 "charattr_col as cast_udt_to_int from charattr_tab order by 1";

pstmt = conn.prepareStatement(s);

 ((IfxPreparedStatement)pstmt).setBindColIfxType(2,IfxTypes.IFX_TYPE_LVARCHAR);

((IfxPreparedStatement)pstmt).setBindColType(3,Types.INTEGER);

ResultSet rs = pstmt.executeQuery();

System.out.println("Fetching data ...");

int curRow = 0;

while (rs.next())

{

 curRow++;

 int intret = rs.getInt("int_col");

 String strret = rs.getString("cast_udt_to_lvc");

 int intret2 = rs.getInt("cast_udt_to_int");

} // end while

Using Other Mapping Extensions

The remaining method signatures are listed next, along with any additional

considerations that apply. In each case, the Informix type must be the last

parameter to the standard JDBC PreparedStatement.setXXX() interface.

IfmxPreparedStatement.setArray()

public void setArray(int parameterIndex, Array x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setAsciiStream()

public void setAsciiStream(int i, InputStream x, int length, int

 ifxType) throws SQLException

When your application is inserting a very large ASCII value into a

LONGVARCHAR column, it is sometimes more efficient to send the ASCII

value to the server using java.io.InputStream.

IfmxPreparedStatement.setBigDecimal()

public void setBigDecimal(int i, BigDecimal x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setBinaryStream()

public void setBinaryStream(int i, InputStream x, int length, int

 ifxType) throws SQLException

When your application is inserting a very large binary value into a

LONGVARbinary column, it is sometimes more efficient to send the binary

value to the server using java.io.InputStream.

IfmxPreparedStatement.setBlob()

public void setBlob(int parameterIndex, Blob x, int ifxType)

 throws SQLException

C-8 IBM Informix JDBC Driver Programmer’s Guide

IfmxPreparedStatement.setBoolean()

public void setBoolean(int i, boolean x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setByte()

public void setByte(int i, byte x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setBytes()

public void setBytes(int i, byte x[], int ifxType) throws

 SQLException

IfmxPreparedStatement.setCharacterStream()

public void setCharacterStream(int parameterIndex, Reader reader,

 int length, int ifxType) throws SQLException

When your application is setting a LONGVARCHAR parameter to a very

large UNICODE value, it is sometimes more efficient to send the UNICODE

value to the server using java.io.Reader.

IfmxPreparedStatement.setClob()

public void setClob(int parameterIndex, Clob x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setDate()

public void setDate(int i, Date x, int ifxType) throws

 SQLException

public void setDate(int parameterIndex, Date x, Calendar Cal,

 int ifxType) throws SQLException

IfmxPreparedStatement.setDouble()

public void setDouble(int i, double x, int ifxType) throws SQ

 LException

IfmxPreparedStatement.setFloat()

public void setFloat(int i, float x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setInt()

public void setInt(int i, int x, int ifxType) throws SQLException

IfmxPreparedStatement.setLong()

public void setLong(int i, long x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setNull()

Appendix C. Mapping Data Types C-9

public void setNull(int i, int sqlType, int ifxType) throws

 SQLException

IfmxPreparedStatement.setShort()

public void setShort(int i, short x, int ifxType) throws

SQLException

IfmxPreparedStatement.setString()

public void setString(int i, String x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setTime()

public void setTime(int i, Time x, int ifxType) throws

 SQLException

public void setTime(int parameterIndex, Time time, Calendar Cal,

 int ifxType) throws SQLException

IfmxPreparedStatement.setTimestamp()

public void setTimestamp(int i, Timestamp x, int ifxType) throws

 SQLException

public void setTimestamp(int parameterIndex, Timestamp x, Calendar

 Cal) throws SQLException

Using the IfxTypes Class

The extended IfmxPreparedStatement methods require you to pass in the

Informix data type to which you want to map. These types are part of the

com.informix.lang.IfxTypes class.

The following table shows the IfxTypes constants and the corresponding

Informix data types.

IfxTypes Constant Informix Data Type

IfxTypes.IFX_TYPE_CHAR CHAR

IfxTypes.IFX_TYPE_SMALLINT

SMALLINT

IfxTypes.IFX_TYPE_INT INT

IfxTypes.IFX_TYPE_FLOAT FLOAT

IfxTypes.IFX_TYPE_SMFLOAT SMALLFLOAT

IfxTypes.IFX_TYPE_DECIMAL DECIMAL

IfxTypes.IFX_TYPE_SERIAL SERIAL

IfxTypes.IFX_TYPE_DATE DATE

IfxTypes.IFX_TYPE_MONEY MONEY

IfxTypes.IFX_TYPE_NULL NULL

C-10 IBM Informix JDBC Driver Programmer’s Guide

IfxTypes.IFX_TYPE_DATETIME

DATETIME

IfxTypes.IFX_TYPE_BYTE BYTE

IfxTypes.IFX_TYPE_TEXT TEXT

IfxTypes.IFX_TYPE_VARCHAR

VARCHAR

IfxTypes.IFX_TYPE_INTERVAL

INTERVAL

IfxTypes.IFX_TYPE_NCHAR NCHAR

IfxTypes.IFX_TYPE_NVCHAR NVCHAR

IfxTypes.IFX_TYPE_INT8 INT8

IfxTypes.IFX_TYPE_SERIAL8 SERIAL8

IfxTypes.IFX_TYPE_SET SQLSET

IfxTypes.IFX_TYPE_MULTISET

SQLMULTISET

IfxTypes.IFX_TYPE_LIST SQLLIST

IfxTypes.IFX_TYPE_ROW SQLROW

IfxTypes.IFX_TYPE_COLLECTION

COLLECTION

IfxTypes.IFX_TYPE_UDTVAR UDTVAR

IfxTypes.IFX_TYPE_UDTFIXED

UDTFIXED

IfxTypes.IFX_TYPE_REFSER8 REFSER8

IfxTypes.IFX_TYPE_LVARCHAR

LVARCHAR

IfxTypes.IFX_TYPE_SENDRECV

SENDRECV

IfxTypes.IFX_TYPE_BOOL BOOLEAN

IfxTypes.IFX_TYPE_IMPEXP IMPEXP

IfxTypes.IFX_TYPE_IMPEXPBIN

IMPEXPBIN

IfxTypes.IFX_TYPE_CLOB CLOB

IfxTypes.IFX_TYPE_BLOB BLOB

Appendix C. Mapping Data Types C-11

Extension Summary

The following table lists the PreparedStatement.setXXX() methods that

Informix JDBC Driver supports for nonextended data types. The top heading

lists the standard JDBC API data types defined in the java.sql.Types class.

These translate to specific Informix data types, as shown in the table in “Data

Type Mapping Between Extended Types and Java and JDBC Types” on page

C-2. The table below lists the setXXX() methods you can use to write data of

a particular JDBC API data type. An uppercase and bold X indicates the

setXXX() method that it is recommended you use with IBM Informix JDBC

Driver; a lowercase x indicates other setXXX()methods that IBM Informix

JDBC Driver supports.

setXXX() Method

JDBC API Data Types from java.sql.Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

FL
O

A
T

D
O

U
B

L
E

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

L
O

N
G

V
A

R
C

H
A

R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

L
O

N
G

V
A

R
B

IN
A

R
Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

setByte() X x x x x x x x x x1 x1

setShort() x X x x x x x x x x1 x1

setInt() x x X x x x x x x x1 x1

setLong() x x x X x x x x x x1 x1

setFloat() x x x x X x x x x x1 x1

setDouble() x x x x x X X x x x1 x1

setBigDecimal() x x x x x x x X X x x

setBoolean() x x x x x x x x x x x

setString() x x x x x x x x x X X x x x x x x x

setBytes() x X X x

setDate() x x X x

setTime() x x X x

setTimestamp() x x x X

setAsciiStream() X x x x

setCharacterStream() X x x x

setUnicodeStream()

setBinaryStream() x x x X

setObject() x x x x x x x x x x x x2 x x x2 x x3 x

Notes:1 The column value must match the type of setXXX() exactly, or an SQLException is raised. If the column

value is not within the allowed value range, the setXXX() method raises an exception instead of converting the data

type. For example, setByte(1) raises an SQLException if the value being written is 1000.

2 A byte array is written.3 A

Timestamp object is written instead of a Time object.

C-12 IBM Informix JDBC Driver Programmer’s Guide

The setNull() method writes an SQL null value.

The following table lists the PreparedStatement.setXXX() methods that

IBM Informix JDBC Driver supports for the Informix extended data types, the

mappings for which are shown in the table on page C-3. The table lists the

setXXX() methods you can use to write data of a particular extended data

type.

An uppercase and bold X indicates the recommended setXXX() method to use;

a lowercase x indicates other setXXX() methods supported by IBM Informix

JDBC Driver. The table does not include setXXX() methods that you cannot

use with any of the Informix extended data types.

setXXX() Method

Informix Extended Data Types

B
O

O
L

E
A

N

LV
A

R
C

H
A

R

O
p

aq
u

e
ty

p
es

B
L

O
B

C
L

O
B

B
Y

T
E

T
E

X
T

N
A

M
E

D

R

O
W

U
N

N
A

M
E

D

R

O
W

S
E

T

or

M

U
LT

IS
E

T

L
IS

T

setByte() x x

setShort() x

setInt() x

setBoolean() X

setString() X x x

setBytes() x x

setAsciiStream() x x X

setCharacterStream() x x X

setBinaryStream() x x X

setObject() x x X x x x x X X x x

setArray() x x

setBlob() X

setClob() X

The setNull() method writes an SQL null value.

Appendix C. Mapping Data Types C-13

Data Type Mapping for ResultSet.getXXX() Methods

Use the ResultSet.getXXX() methods to transfer data from an Informix

database to a Java program that uses the JDBC API to connect to an Informix

database. For example, use the ResultSet.getString() method to get the data

stored in a column of data type LVARCHAR.

Important: If you use an expression within an SQL statement—for example,

SELECT mytype::LVARCHAR FROM mytab—you might not be able to

use ResultSet.getXXX(columnName) to retrieve the value. Use

ResultSet.getXXX(columnIndex) to retrieve the value instead.

The following table lists the ResultSet.getXXX() methods that IBM Informix

JDBC Driver supports for nonextended data types. The top heading lists the

standard JDBC API data types defined in the java.sql.Types class. These

translate to specific Informix data types, as shown in the first table in “Data

Type Mapping Between Informix and JDBC Data Types” on page C-1. The

table lists the getXXX() methods you can use to retrieve data of a particular

JDBC API data type.

An uppercase and bold X indicates the recommended getXXX() method to

use; a lowercase x indicates other getXXX() methods supported by

IBM Informix JDBC Driver.

getXXX() Method

JDBC API Data Types from java.sql.Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

FL
O

A
T

D
O

U
B

L
E

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

L
O

N
G

V
A

R
C

H
A

R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

L
O

N
G

V
A

R
B

IN
A

R
Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

getByte() X x x x x x x x x x1 x1

getShort() x X x x x x x x x x1 x1

getInt() x x X x x x x x x x1 x1

getLong() x x x X x x x x x x1 x1

getFloat() x x x x X x x x x x1 x1

getDouble() x x x x x X X x x x1 x1

getBigDecimal() x x x x x x x X X x x

getBoolean() x x x x x x x x x x x

getString() x x x x x x x x x X X x x x x x x x

getBytes() x X X x

C-14 IBM Informix JDBC Driver Programmer’s Guide

getXXX() Method

JDBC API Data Types from java.sql.Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

FL
O

A
T

D
O

U
B

L
E

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

L
O

N
G

V
A

R
C

H
A

R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

L
O

N
G

V
A

R
B

IN
A

R
Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

getDate() x x X x

getTime() x x X x

getTimestamp() x x x X

getAsciiStream() X x x x

getCharacterStream() X x x x

getUnicodeStream()

getBinaryStream() x x x X

getObject() x x x x x x x x x x x x2 x x x2 x x3 x

Notes:1 The column value must match the type of getXXX() exactly, or an SQLException is raised. If

the column value is not within the allowed value range, the getXXX() method raises an exception

instead of converting the data type. For example, getByte(1) raises an SQLException if the column

value is 1000.2 A byte array is returned.3 A Timestamp object is returned instead of a Time object.

The getXXX() methods return a null value if the retrieved column value is an

SQL null value.

The following table lists the ResultSet.getXXX() methods that IBM Informix

JDBC Driver supports for the Informix extended data types, the mappings for

which are shown in the table on page C-3. The table lists the getXXX()

methods you can use to retrieve data of a particular extended data type.

An uppercase and bold X indicates the recommended getXXX() method to

use; a lowercase x indicates other getXXX() methods supported by

IBM Informix JDBC Driver. The table does not include getXXX() methods that

you cannot use with any of the Informix extended data types.

Appendix C. Mapping Data Types C-15

getXXX() Method

Informix Extended Data Types

B
O

O
L

E
A

N

LV
A

R
C

H
A

R

O
p

aq
u

e
ty

p
es

B
L

O
B

C
L

O
B

B
Y

T
E

T
E

X
T

N
A

M
E

D

R

O
W

U
N

N
A

M
E

D

R

O
W

S
E

T

or

M

U
LT

IS
E

T

L
IS

T

getByte() x x

getShort() x

getInt() x

getBoolean() X

getString() X x x

getBytes() x x

getAsciiStream() x x X

getCharacterStream() x x X

getBinaryStream() x x X

getObject() x x X x x x x X X x x

getArray() x x

getBlob() X

getClob() X

The getXXX() methods return a null value if the retrieved column value is an

SQL null value.

Data Type Mapping for UDT Manager and UDR Manager

When you use the UDTManager and UDRManager classes to create opaque

types and Java UDRs in the database server, the driver maps Java method

arguments and return types to SQL data types according to the tables in this

section. Any data type not shown in these tables is not supported.

If the Java method has arguments of any of the following Java types, the

arguments and return type are mapped to SQL types in the server as shown

in the following table. The table shows the Informix data type to which each

Java data type maps.

Java Data Type SQL Data Type

boolean, java.lang.Boolean BOOLEAN

char CHAR(1)

C-16 IBM Informix JDBC Driver Programmer’s Guide

byte CHAR(1)

short, java.lang.Short SMALLINT

int, java.lang.Integer INT

long, java.lang.Long INT8

float, java.lang.Float SMALLFLOAT

double, java.lang.Double FLOAT1

java.lang.String LVARCHAR

java.math.BigDecimal DECIMAL

 Default precision is set by the server to be:

DECIMAL(16,0) for an ANSI database

decimal (16,255) for a non-ANSI database

java.sql.Date DATE

java.sql.Time DATETIME HOUR TO SECOND

java.sql.Timestamp DATETIME YEAR TO FRACTION(5)

com.informix.lang.IntervalYM INTERVAL YEAR TO MONTH

com.informix.lang.IntervalDF INTERVAL DAY TO FRACTION(5)

java.sql.Blob BLOB

java.sql.Clob CLOB

1 This mapping is JDBC compliant. You can map the Java double data type

(via the JDBC FLOAT data type) to the Informix SMALLFLOAT data type for

backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT

environment variable to 1.

Mapping for Casts

The following table shows the mapping supported between the type defined

for the ifxtype parameter in the UDTMetaData.setXXXCast() methods and

SQL data types in the server.

ifxtype Parameter Type from

com.informix.lang.IfxTypes Informix Data Type

IFX_TYPE_CHAR CHAR

IFX_TYPE_SMALLINT SMALLINT

IFX_TYPE_INT INT

IFX_TYPE_FLOAT FLOAT

IFX_TYPE_SMFLOAT SMALLFLOAT

Appendix C. Mapping Data Types C-17

IFX_TYPE_DECIMAL DECIMAL

IFX_TYPE_SERIAL SERIAL

IFX_TYPE_DATE DATE

IFX_TYPE_MONEY MONEY

IFX_TYPE_DATETIME DATETIME

IFX_TYPE_BYTE BYTE

IFX_TYPE_TEXT TEXT

IFX_TYPE_VARCHAR VARCHAR

IFX_TYPE_INTERVAL INTERVAL

IFX_TYPE_NCHAR NCHAR

IFX_TYPE_NVCHAR NVCHAR

IFX_TYPE_INT8 INT8

IFX_TYPE_SERIAL8 SERIAL8

IFX_TYPE_LVARCHAR LVARCHAR

IFX_TYPE_SENDRECV SENDRECV

IFX_TYPE_BOOL BOOLEAN

IFX_TYPE_IMPEXP IMPEXP

IFX_TYPE_IMPEXPBIN IMPEXPBIN

IFX_TYPE_CLOB CLOB

IFX_TYPE_BLOB BLOB

Mapping for Field Types

The following table shows the mapping supported between the types defined

for the ifxtype parameter in the UDTMetaData.setFieldType() method and the

Java data types as they appear in the Java class file. Data types not shown in

this table are not supported within the opaque type.

ifxtype Parameter Type from

com.informix.lang.IfxTypes Java Data Type

IFX_TYPE_CHAR java.lang.String

IFX_TYPE_SMALLINT short

IFX_TYPE_INT int

IFX_TYPE_FLOAT double

IFX_TYPE_SMFLOAT float1

C-18 IBM Informix JDBC Driver Programmer’s Guide

IFX_TYPE_DECIMAL java.lang.BigDecimal

IFX_TYPE_SERIAL int

IFX_TYPE_DATE Date

IFX_TYPE_MONEY java.lang.BigDecimal

IFX_TYPE_DATETIME java.lang.Timestamp if starting qualifier is

Year, Month, or Day; otherwise, java.lang.Time

(see “Field Lengths and Date-Time Data” on

page C-19).

IFX_TYPE_INTERVAL com.informix.lang.IfxIntervalYM if starting

qualifier is Year or Month; otherwise,

com.informix.lang.IfxIntervalDF (see “Field

Lengths and Date-Time Data” on page C-19).

IFX_TYPE_NCHAR java.lang.String

IFX_TYPE_INT8 long

IFX_TYPE_SERIAL8 long

IFX_TYPE_BOOL boolean

IFX_TYPE_CLOB java.sql.Clob

IFX_TYPE_BLOB java.sql.Blob

1 This mapping is JDBC compliant. You can map IFX_TYPE_SMFLOAT data

type (via the JDBC FLOAT data type) to the Java double data type for

backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT

environment variable to 1.

Field Lengths and Date-Time Data

When you set a field type to a date-time or interval data type by calling

setFieldType(IFX_TYPE_DATETIME) or

setFieldType(IFX_TYPE_INTERVAL), the driver maps the date-time field to

either java.sql.Timestamp or java.sql.Time, depending on the encoded length

you set by calling setFieldLength().

For example, given that the standard format for a date-time field is

YYYY-MM-DD HH:MM:SS, the driver uses the following mapping algorithm:

v If the encoded length has the start code from hour or less, it is mapped to

java.sql.Time.

v If the encoded length has the start code from year or less, it is mapped to

java.sql.TimeStamp.

For intervals, the standards are either YYYY-MM or DD HH:MM:SS.frac. The

mapping is as follows:

Appendix C. Mapping Data Types C-19

v If the encoded length has the start code from day or less, it is mapped to

com.informix.jdbc.IfxIntervalDF.

v If the encoded length has the start code from year or less, it is mapped to

com.informix.jdbc.IfxIntervalYM.

C-20 IBM Informix JDBC Driver Programmer’s Guide

Appendix D. Accessibility

The syntax diagrams in the HTML version of this manual are available in

dotted decimal syntax format, which is an accessible format that is available

only if you are using a screen reader.

Dotted Decimal Syntax Diagrams

In dotted decimal format, each syntax element is written on a separate line. If

two or more syntax elements are always present together (or always absent

together), the elements can appear on the same line, because they can be

considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1.

To hear these numbers correctly, make sure that your screen reader is set to

read punctuation. All syntax elements that have the same dotted decimal

number (for example, all syntax elements that have the number 3.1) are

mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1

SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example,

if a syntax element with dotted decimal number 3 is followed by a series of

syntax elements with dotted decimal number 3.1, all the syntax elements

numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to

add information about the syntax elements. Occasionally, these words and

symbols might occur at the beginning of the element itself. For ease of

identification, if the word or symbol is a part of the syntax element, the word

or symbol is preceded by the backslash (\) character. The * symbol can be

used next to a dotted decimal number to indicate that the syntax element

repeats. For example, syntax element *FILE with dotted decimal number 3 is

read as 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats.

Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line

with the same dotted decimal number as the relevant items. The line can also

show another symbol that provides information about the syntax elements.

For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you

use more than one of the LASTRUN and DELETE syntax elements, the elements

© Copyright IBM Corp. 1996, 2004 D-1

must be separated by a comma. If no separator is given, assume that you use

a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this identifies a reference that

is defined elsewhere. The string following the % symbol is the name of a

syntax fragment rather than a literal. For example, the line 2.1 %OP1 means

that you should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal

numbers:

? Specifies an optional syntax element. A dotted decimal number

followed by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a

dotted decimal number, the ? symbol is displayed on the same line as

the syntax element (for example, 5? NOTIFY). If there is more than one

syntax element with a dotted decimal number, the ? symbol is

displayed on a line by itself, followed by the syntax elements that are

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5

UPDATE, you know that syntax elements NOTIFY and UPDATE are

optional; that is, you can choose one or none of them. The ? symbol is

equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed

by the ! symbol and a syntax element indicates that the syntax

element is the default option for all syntax elements that share the

same dotted decimal number. Only one of the syntax elements that

share the same dotted decimal number can specify a ! symbol. For

example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1

(DELETE), you know that (KEEP) is the default option for the FILE

keyword. In this example, if you include the FILE keyword but do not

specify an option, default option KEEP is applied. A default option also

applies to the next higher dotted decimal number. In this example, if

the FILE keyword is omitted, default FILE(KEEP) is used. However, if

you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE),

the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword),

and does not apply to 2? FILE. Nothing is used if the keyword FILE is

omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this

syntax element can be used zero or more times; that is, it is optional

and can be repeated. For example, if you hear the line 5.1*

data-area, you know that you can include more than one data area or

D-2 IBM Informix JDBC Driver Programmer’s Guide

you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE,

you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there

is only one item with that dotted decimal number, you can repeat

that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several

items have that dotted decimal number, you can use more than

one item from the list, but you cannot use the items more than

once each. In the previous example, you could write HOST STATE,

but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this

syntax element must be included one or more times. For example, if

you hear the line 6.1+ data-area, you must include at least one data

area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you

must include HOST, STATE, or both. As for the * symbol, you can only

repeat a particular item if it is the only item with that dotted decimal

number. The + symbol, like the * symbol, is equivalent to a loop-back

line in a railroad syntax diagram.

Appendix D. Accessibility D-3

D-4 IBM Informix JDBC Driver Programmer’s Guide

Glossary

applet. A program created with Java classes,

that is not intended to be run on its own but

rather to be embedded in another application,

such as a browser.

autocommit mode. A mode in which a

COMMIT statement is automatically executed

after each statement sent to the database server.

BLOB. A smart large object data type that stores

any kind of binary data, including images. The

database server performs no interpretation on the

contents of a BLOB column.

 See also smart large object.

blobpage. The unit of disk allocation within a

blobspace. The size of a blobpage is determined

by the DBA and can vary from blobspace to

blobspace.

blobspace. A logical collection of chunks that is

used to store TEXT and BYTE data.

 See also dbspace.

built-in data type . A fundamental data type

defined by the database server; for example,

INTEGER, CHAR, or SERIAL8.

BYTE. A built-in data type for a simple large

object that stores any type of binary data. The

object can be as large as 231 bytes.

cast. A mechanism that the database server uses

to convert data from one data type to another.

The server provides built-in casts that it performs

automatically. Users can create both implicit and

explicit casts.

 See also cast support function, explicit cast, implicit

cast, system-defined cast.

cast support function. A function that is used to

implement an implicit or explicit cast by

performing the necessary operations for

conversion between two data types. A cast

support function is optional unless the internal

storage representations of the two data types are

not equivalent.

CLASSPATH. An environment variable that

tells the Java virtual machine (JVM) and other

applications where to find the Java class libraries

used in a Java program.

CLOB. A data type for a smart large object that

stores text items, such as PostScript or HTML

files.

 See also smart large object.

code set. A set of unique bit patterns that are

mapped to the characters contained in a specific

natural language, which include the alphabet,

digits, punctuation, and diacritical marks. There

can be more than one code set for a language; for

example, the code sets for the English language

include ASCII, ISO8895-1, and Microsoft 1252.

You specify the code set that your database

server uses when you set the GLS locale.

 See also locale.

collection. An instance of a collection data type;

a group of elements of the same data type stored

in a SET, MULTISET, or LIST object.

 See also collection data type.

collection data type. A complex data type that

groups values, called elements, of a single data

type in a column. Collection data types consist of

the SET, MULTISET, or LIST type constructor

and an element type, which can be any data

type, including a complex data type.

complex data type. A data type that is built

from a combination of other data types using an

SQL type constructor or the CREATE ROW TYPE

statement and whose components can be

accessed through SQL statements. Complex data

types include collection data types and row data

types.

© Copyright IBM Corp. 1996, 2004 E-1

concurrency. The ability of two or more

processes to access the same database

simultaneously.

connection. An association between an

application and a database environment, created

by a CONNECT or DATABASE statement.

Database servers can also have connections to

one another.

 See also explicit connection, implicit connection.

constructed data type. A complex data type

created with a type constructor; for example, a

collection data type or an unnamed row data

type.

CORBA. (Common Object Request Broker

Architecture) The CORBA 2.0 specification

describes a convention called Object Request

Broker (ORB), the infrastructure for

distributed-object computing. CORBA enables

client applications to communicate with remote

objects and invoke operations statically or

dynamically.

cursor. An SQL object that points to a row in

the results table returned by a SELECT

statement. A cursor enables an application to

process data from multiple data sets

simultaneously rather than sequentially.

cursor function. A user-defined function that

returns one or more rows of data and requires a

cursor to execute. An SPL function is a cursor

function when its RETURN statement contains

the WITH RESUME keywords. An external

function is a cursor function when it is defined

as an iterator function.

database URL. A URL passed to the

DriverManager.getConnection() method that

specifies the subprotocol (the database

connectivity mechanism), the database or

database server identifier, and a list of properties

that can include Informix environment variables.

data type. See built-in data type, extended data

type.

DataBlade API. The C application

programming interface (API) for IBM Informix

Dynamic Server. The DataBlade API is used for

the development of DataBlade modules. The

DataBlade API contains routines to process data

in the database server and return the results to

the calling application.

DataBlade API data types. A set of Informix C

data types that correspond to some of the

Informix SQL data types, including extended

data types. You should use these data types

instead of the standard C data types to ensure

portable applications.

dbspace. A logical collection of one or more

chunks within which you store databases and

tables. Because chunks represent specific regions

of disk space, the creators of databases and

tables can control where their data is physically

located by placing databases or tables in specific

dbspaces.

 See also BLOB.

delimiter. The boundary of an input field or the

terminator for a database column or row. Some

files and prepared objects require a semicolon (;

), comma (,), pipe (|), space, or tab delimiter

between statements.

distinct data type. A data type based on an

existing opaque, built-in, distinct, or named row

data type, known as its source type. The distinct

data type has the same internal storage

representation as its source type, but it has a

different name. To compare a distinct data type

with its source type requires an explicit cast. A

distinct data type inherits all routines that are

defined on its source type.

DOM. (Document Object Model) A tree of

objects with interfaces for traversing the tree and

writing an XML version of it, as defined by the

Document Object Model Level 1 Specification

(available at http://www.w3.org/DOM/). A

DOM object has the data type Document.

 See also SAX, JAXP, XML.

explicit cast. A cast that requires a user to

specify the CAST AS keyword or cast operator (

::) to convert data from one data type to another.

 See also cast, cast support function.

E-2 IBM Informix JDBC Driver Programmer’s Guide

http://www.w3.org/DOM/

explicit connection. A connection made to a

database environment that uses the CONNECT

statement.

 See also implicit connection.

extended data type. A data type that is not

built-in; namely, a collection data type, row data

type, opaque data type, or distinct data type.

fundamental data type. A data type that cannot

be broken into smaller pieces by the database

server using SQL statements; for example,

built-in data types and opaque data types.

Global Language Support (GLS). An

application environment that allows Informix

application programming interfaces (APIs) and

database servers to handle different languages,

cultural conventions, and code sets. Developers

use the GLS libraries to manage all string,

currency, date, and time data types in their code.

Using GLS, you can add support for a new

language, character set, and encoding by editing

resource files, without access to the original

source code and without rebuilding the client

software.

host variable. A C or COBOL program variable

that is referenced in an embedded statement. A

host variable is identified by the dollar sign ($)

or colon (:) that precedes it.

implicit cast. A cast that the database server

automatically performs to convert data from one

data type to another.

 See also cast, cast support function.

implicit connection. A connection made using a

database statement (DATABASE, CREATE

DATABASE, START DATABASE, DROP

DATABASE).

 See also explicit connection.

IP address. The unique ID of each computer on

the Internet. The format consists of four

numerical strings separated by dots, such as

123.45.67.89.

jar utility. A JavaSoft utility that creates Java

archive, or JAR, files. JAR is a

platform-independent file format that aggregates

many files into one.

JAXP. (Java API for XML Parsing) An API for

parsing XML documents, using two main parsing

methods, Simple API for XML (SAX) and

Document Object Model (DOM.) JAXP provides

a “plugability layer” around the SAX and DOM

APIs, which standardizes access to different

implementations of SAX and DOM. The

plugability layer is a set of methods for

instantiating and configuring SAX parsers and

creating DOM objects. For more information, see

http://java.sun.com/xml.

 See also SAX, DOM, XML

keyword. A word that has meaning to a

programming language. In Informix SQL,

keywords are shown in syntax diagrams in all

uppercase letters. They must be used in SQL

statements exactly as shown in the syntax,

although they can be in either uppercase or

lowercase letters.

large object. A data object that exceeds 255

bytes in length. A large object is logically stored

in a table column but physically stored

independently of the column, because of its size.

Large objects can contain non-ASCII data.

IBM Informix Dynamic Server recognizes two

kinds of large objects; simple large objects (TEXT,

BYTE) and smart large objects (CLOB and

BLOB).

 See also simple large object, smart large object.

LIST data type. A collection data type in which

elements are ordered and duplicates are allowed.

 See also collection data type.

locale. A set of files that define the

native-language behavior of the program at

runtime. The rules are usually based on the

linguistic customs of the region or the territory.

The locale can be set through an environment

variable that dictates output formats for

numbers, currency symbols, dates, and time, as

well as collation order for character strings and

regular expressions.

Glossary E-3

http://java.sun.com/xml

See also Global Language Support (GLS).

LVARCHAR. A built-in data type that stores

varying-length character data greater than 256

bytes. It is used for input and output casts for

opaque data types. LVARCHAR supports

code-set order for comparisons of character data.

metadata. Data about data. Metadata provides

information about data in the database or used

in the application. Metadata can be data

attributes, such as name, size, and data type, or

descriptive information about data.

MULTISET data type. A collection data type in

which elements are not ordered and duplicates

are allowed.

 See also collection data type.

named row data type. A row data type that is

created with the CREATE ROW TYPE statement

and has a name. A named row data type can be

used to construct a typed table and can be part

of a type or table hierarchy.

 See also row data type, unnamed row data type.

opaque data type. An extended data type that

contains one or more members but whose

internal structure is interpreted by the database

server using user-defined support routines.

RMI. (Remote Method Invocation) A method

for creating distributed Java-to-Java applications,

in which the methods of remote Java objects can

be invoked from other Java virtual machines,

possibly on different hosts.

row data type. A complex data type consisting

of a group of ordered data elements (fields) of

the same or different data types. The fields of a

row type can be of any supported built-in or

extended data type, including complex data

types, except SERIAL and SERIAL8 and, in

certain situations, TEXT and BYTE.

 There are two kinds of row data types:

v Named row types, created using the CREATE

ROW TYPE statement

v Unnamed row types, created using the ROW

constructor

See also named row data type, unnamed row data

type.

SAX. (Simple API for XML) An event-driven

interface for processing XML documents in

which the parser invokes one of several methods

supplied by the caller when a “parsing event”

occurs. Events include recognizing an XML tag,

finding an error, encountering a reference to an

external entity, or processing am Document Type

Definition (DTD) specification.

 See also DOM, XML, JAXP.

scroll cursor. A cursor that can fetch the next

row or any prior row, thereby allowing it to read

rows multiple times.

servlet. An extension method for many

common protocols, especially HTTP. Servlets are

modules that run inside request/response-
oriented servers. Servlets are similar to applets in

that their classes might be dynamically loaded,

either across the network or from local storage.

However, servlets differ from applets in that they

lack a graphical interface.

SET data type. A collection data type in which

elements are not ordered and duplicates are not

allowed.

 See also collection data type.

simple large object. A large object that is stored

in a blobspace, is not recoverable, and does not

obey transaction isolation modes. Simple large

objects include TEXT and BYTE data types.

 See also TEXT, BYTE.

smart large object. A large object that:

v Is stored in an sbspace, a logical storage area

that contains one or more chunks

v Has read, write, and seek properties similar to

a UNIX file

v Is recoverable

v Obeys transaction isolation modes

v Can be retrieved in segments by an application

Smart large objects include CLOB and BLOB data

types.

E-4 IBM Informix JDBC Driver Programmer’s Guide

sqlhosts file. An Informix file containing

information that lets a client application find and

connect to an Informix database server anywhere

on the network.

SQLSTATE. A variable that contains status

values about the outcome of SQL statements.

support routines. The internal routines that the

database server automatically invokes to process

a data type, cast, aggregate, or access method.

 The database server uses user-defined support

routines to perform operations (such as

converting to and from the internal, external, and

binary representations of the type) on opaque

data types.

 A secondary access method uses a support

routine in an operator class to perform

operations (such as building or searching) on an

index.

sysmaster database. A master database created

and maintained by every Informix database

server. The sysmaster database contains the

ON–Archive catalog tables and system

monitoring interface (SMI) tables. Do not modify

this database.

system catalog. A group of database tables that

contain information about the database itself,

such as the names of tables or columns in the

database, the number of rows in a table, the

information about indexes and database

privileges, and so on.

system-defined cast. A cast that is built into the

database server. A system-defined cast performs

automatic conversions between different built-in

data types.

TEXT. A built-in data type for a simple large

object that stores text data and can be as large as

231 bytes.

tuple buffer. The section of IBM Informix JDBC

Driver memory that stores the retrieved rows

from a SELECT statement.

unnamed row data type. A row type created

with the ROW constructor that has no defined

name and no inheritance properties. Two

unnamed row types are equivalent if they have

the same number of fields and if corresponding

fields have the same data type, even if the fields

have different names.

XML. (Extensible Markup Language) A markup

language defined by the World Wide Web

Consortium (W3C) that provides rules,

guidelines, and conventions for describing

structured data in a plain text, editable file. XML

uses tags only to delimit pieces of data, leaving

the interpretation of the data to the application

that uses it.

 See also DOM, SAX, JAXP.

Glossary E-5

E-6 IBM Informix JDBC Driver Programmer’s Guide

Error Messages

-79700 Method not supported

Explanation: IBM Informix JDBC Driver does

not support this JDBC method.

-79702 Can’t create new object

Explanation: The software could not allocate

memory for a new String object.

-79703 Row/column index out of range

Explanation: The row or column index is out of

range.

User Response: Compare the index to the

number of rows and columns expected from the

query to ensure that it is within range.

-79704 Can’t load driver

Explanation: IBM Informix JDBC Driver could

not create an instance of itself and register it in

the DriverManager class. The rest of the

SQLException text describes what failed.

-79705 Incorrect URL format

Explanation: The database URL you have

submitted is invalid. IBM Informix JDBC Driver

does not recognize the syntax.

User Response: Check the syntax and try again.

-79706 Incomplete input

Explanation: An invalid character was found

during conversion of a String value to an

IntervalDF or IntervalYM object.

User Response: Check “INTERVAL Data Type”

on page 4-10 for correct values.

-79707 Invalid qualifier

Explanation: An error was found during

construction of an Interval qualifier from atomic

elements: length, start, or end values.

User Response: Check the length, start, and end

values to verify that they are correct. See

“INTERVAL Data Type” on page 4-10 for correct

values.

-79708 Can’t take null input

Explanation: The string you have provided is

null. IBM Informix JDBC Driver does not

understand null input in this case.

User Response: Check the input string to

ensure that it has the proper value.

-79709 Error in date format

Explanation: The expected input is a valid date

string in the following format: yyyy-mm-dd.

User Response: Check the date and verify that

it has a four-digit year, followed by a valid

two-digit month and two-digit day. The delimiter

must be a hyphen (-).

-79710 Syntax error in SQL escape clause

Explanation: Invalid syntax was passed to a

jdbc escape clause. Valid JDBC escape clause

syntax is demarcated by curly braces and a

keyword: for example, {keyword syntax}.

User Response: Check the JDBC 3.0

documentation from Sun Microsystems for a list

of valid escape clause keywords and syntax.

-79711 Error in time format

Explanation: An invalid time format was

passed to a JDBC escape clause. The escape

© Copyright IBM Corp. 1996, 2004 F-1

clause syntax for time literals has the following

format: {t ’hh:mm:ss’}.

-79712 Error in timestamp format

Explanation: An invalid time stamp format was

passed to a JDBC escape clause. The escape

clause syntax for time stamp literals has the

following format: {ts ’yyyy-mm-dd hh:mm:ss.f...’}.

-79713 Incorrect number of arguments

Explanation: An incorrect number of arguments

was passed to the scalar function escape syntax.

The correct syntax is {fn function(arguments)}.

User Response: Verify that the correct number

of arguments was passed to the function.

-79714 Type not supported

Explanation: You have specified a data type

that is not supported by IBM Informix JDBC

Driver.

User Response: Check your program to make

sure the data type used is among those

supported by the driver.

-79715 Syntax error

Explanation: Invalid syntax was passed to a

jdbc escape clause. Valid JDBC escape clause

syntax is demarcated by curly braces and a

keyword: {keyword syntax}.

User Response: Check the JDBC 3.0

documentation from Sun Microsystems for a list

of valid escape clause keywords and syntax.

-79716 System or internal error

Explanation: An operating or runtime system

error or a driver internal error occurred. The

accompanying message describes the problem.

-79717 Invalid qualifier length

Explanation: The length value for an Interval

object is incorrect.

User Response: See “INTERVAL Data Type” on

page 4-10 for correct values.

-79718 Invalid qualifier start code

Explanation: The start value for an Interval

object is incorrect.

User Response: See “INTERVAL Data Type” on

page 4-10 for correct values.

-79719 Invalid qualifier end code

Explanation: The end value for an Interval

object is incorrect.

User Response: See “INTERVAL Data Type” on

page 4-10 for correct values.

-79720 Invalid qualifier start or end code

Explanation: The start or end value for an

Interval object is incorrect.

User Response: See “INTERVAL Data Type” on

page 4-10 for correct values.

-79721 Invalid interval string

Explanation: An error occurred during

conversion of a String value to an IntervalDF or

IntervalYM object. Check “INTERVAL Data

Type” on page 4-10 for the correct format.

-79722 Numeric character(s) expected

Explanation: An error occurred during

conversion of a String value to an IntervalDF or

IntervalYM object. A numeric value was

expected and not found. Check “INTERVAL Data

Type” on page 4-10 for the correct format.

-79723 Delimiter character(s) expected

Explanation: An error occurred during

conversion of a String value to an IntervalDF or

IntervalYM object. A delimiter was expected and

not found. Check the “INTERVAL Data Type” on

page 4-10 for the correct format.

F-2 IBM Informix JDBC Driver Programmer’s Guide

-79724 Character(s) expected

Explanation: An error occurred during

conversion of a String value to an IntervalDF or

IntervalYM object. End of string was

encountered before conversion was complete.

User Response: Check “INTERVAL Data Type”

on page 4-10 for the correct format.

-79725 Extra character(s) found

Explanation: An error occurred during

conversion of a String value to an IntervalDF or

IntervalYM object. End of string was expected,

but there were more characters in the string.

User Response: Check “INTERVAL Data Type”

on page 4-10 for the correct format.

-79726 Null SQL statement

Explanation: The SQL statement passed in was

null.

User Response: Check the SQL statement string

of your program to make sure it contains a valid

statement.

-79727 Statement was not prepared

Explanation: The SQL statement was not

prepared properly. If you use host variables (for

example, insert into mytab values (?, ?);) in

your SQL statement, you must use

connection.prepareStatement() to prepare the

SQL statement before you can execute it.

-79728 Unknown object type

Explanation: If this is a null opaque type, the

type is unknown and cannot be processed. If this

is a complex type, the data in the collection or

array is of an unknown type and cannot be

mapped to an Informix type. If this is a row, one

of the elements in the row cannot be mapped to

an Informix type. Verify the customized type

mapping or data type of the object.

-79729 Method cannot take argument

Explanation: The method does not take an

argument. Refer to your Java API specification or

the appropriate section of this guide to make

sure you are using the method properly.

-79730 Connection not established

Explanation: A connection was not established.

User Response: You must obtain the connection

by calling the DriverManager.getConnection() or

DataSource.getConnection() method first.

-79731 MaxRows out of range

Explanation: You have specified an out-of-range

maxRow value. Make sure you specify a value

between 0 and Integer.MAX_VALUE.

-79732 Illegal cursor name

Explanation: The cursor name specified is not

valid. Make sure the string passed in is not null

or empty.

-79733 No active result

Explanation: The statement does not contain an

active result. Check your program logic to make

sure you have called the executeXXX() method

before you attempt to refer to the result.

-79734 INFORMIXSERVER has to be

specified

Explanation: INFORMIXSERVER is a property

required for connecting to an Informix database.

You can specify it in the database URL or as part

of a Properties object that is passed to the

connect() method.

-79735 Can’t instantiate protocol

Explanation: An internal error occurred during

a connection attempt. Call technical support.

Error Messages F-3

-79736 No connection/statement establish

yet

Explanation: There is no current connection or

statement.

User Response: Check your program to make

sure a connection was properly established or a

statement was created.

-79737 No meta data

Explanation: There is no metadata available for

this SQL statement.

User Response: Make sure the statement

generates a result set before you attempt to use

it.

-79738 No such column name

Explanation: The column name specified does

not exist. Make sure the column name is correct.

-79739 No current row

Explanation: The cursor is not properly

positioned. You must first position the cursor

within the result set by using a method such as

ResultSet.next(), ResultSet.beforeFirst(),

ResultSet.first(), or ResultSet.absolute().

-79740 No statement created

Explanation: There is no current statement.

Make sure the statement was properly created.

-79741 Can’t convert to

Explanation: There is no data conversion

possible from the column data type to the one

specified. The actual data type is appended to

the end of this message.

User Response: Review your program logic to

make sure that the conversion you have asked

for is supported. Refer to Appendix C for the

data mapping matrix.

-79742 Can’t convert from

Explanation: No data conversion is possible

from the data type you specified to the column

data type. The actual data type is appended to

the end of this message.

User Response: Check your program logic to

make sure that the conversion you have asked

for is supported. Refer to Appendix C for the

data mapping matrix.

-79744 Transactions not supported

Explanation: The user has tried to call commit()

or rollback() on a database that does not support

transactions or has tried to set autoCommit to

False on a nonlogging database.

User Response: Verify that the current database

has the correct logging mode and review the

program logic.

-79745 Read only mode not supported

Explanation: Informix does not support

read-only mode.

-79746 No Transaction Isolation on

non-logging db’s

Explanation: Informix does not support setting

the transaction isolation level on nonlogging

databases.

-79747 Invalid transaction isolation level

Explanation: If the database server could not

complete the rollback, this error occurs. See the

rest of the SQLException message for more

details about why the rollback failed.

 This error also occurs if an invalid transaction

level is passed to setTransactionIsolation(). The

valid values are:

v TRANSACTION_READ_UNCOMMITTED

v TRANSACTION_READ_COMMITTED

v TRANSACTION_REPEATABLE_READ

v TRANSACTION_SERIALIZABLE

F-4 IBM Informix JDBC Driver Programmer’s Guide

-79748 Can’t lock the connection

Explanation: IBM Informix JDBC Driver

normally locks the connection object just before

beginning the data exchange with the database

server. The driver could not obtain the lock. Only

one thread at a time should use the connection

object.

-79749 Number of input values does not

match number of question marks

Explanation: The number of variables that you

set using the PreparedStatement.setXXX()

methods in this statement does not match the

number of ? placeholders that you wrote into the

statement.

User Response: Locate the text of the statement

and verify the number of placeholders and then

check the calls to PreparedStatement.setXXX().

-79750 Method only for queries

Explanation: The

Statement.executeQuery(String) and

PreparedStatement.executeQuery() methods

should only be used if the statement is a SELECT

statement. For other statements, use the

Statement.execute(String),

Statement.executeBatch(),

Statement.executeUpdate(String),

Statement.getUpdateCount(),

Statement.getResultSet(), or

PreparedStatement.executeUpdate() method.

-79751 Forward fetch only [in JDBC 1.2]

Explanation: The result set is not set to

FETCH_FORWARD. Call

Resultset.setFetchDirection(ResultSet.
FETCH_FORWARD) to reset the direction.

-79755 Object is null

Explanation: The object passed in is null. Check

your program logic to make sure your object

reference is valid.

-79756 Must start with ’jdbc’

Explanation: The first token of the database

URL must be the keyword jdbc (case insensitive),

as in the following example:

jdbc:informix-sqli://mymachine:1234/

 mydatabase:user=me:

 password=secret

-79757 Invalid subprotocol

Explanation: The current valid subprotocol is

informix-sqli.

-79758 Invalid IP address

Explanation: When you connect to an Informix

database server via an ip address, the ip address

must be valid. A valid ip address is a set of four

numbers between 0 and 255, separated by dots (

.): for example, 127.0.0.1.

-79759 Invalid port number

Explanation: The port number must be a valid

four-digit number, as follows:

jdbc:informix-sqli://mymachine:1234/

 mydatabase:user=me:

 password=secret

In this example, 1234 is the port number.

-79760 Invalid database name

Explanation: This statement contains the name

of a database in some invalid format.

 The maximum length for database names and

cursor names depends on the version of the

database server. In 7.x, 8.x, and 9.1x versions of

the Informix database server, the maximum

length is 18 characters.

 For IBM Informix SE, database names should be

no longer than 10 characters (fewer in some host

operating systems).

 Both database and cursor names must begin with

a letter and contain only letters, numbers, and

underscore characters. In the 6.0 and later

versions of the database server, database and

Error Messages F-5

cursor names can begin with an underscore.

 In MS-DOS systems, filenames can be a

maximum of eight characters plus a

three-character extension.

-79761 Invalid Property format

Explanation: The database URL accepts

property values in key=value pairs. For example,

user=informix:password=informix adds the

key=value pairs to the list of properties that are

passed to the connection object.

User Response: Check the syntax of the

key=value pair for syntax errors. Make sure there

is only one = sign; that there are no spaces

separating the key, value, or =; and that

key=value pairs are separated by one colon(:),

again with no spaces.

-79762 Attempt to connect to a non 5.x

server

Explanation: When connecting to a Version 5.x

database server, the user must set the database

URL property USE5SERVER to any non-null

value. If a connection is then made to a Version

6.0 or later database server, this exception is

thrown.

User Response: Verify that the version of the

database server is correct and modify the

database URL as needed.

-79764 Invalid Fetch Direction value

Explanation: An invalid fetch direction was

passed as an argument to the

Statement.setFetchDirection() or

ResultSet.setFetchDirection() method. Valid

values are FETCH_FORWARD,

FETCH_REVERSE, and FETCH_UNKNOWN.

-79765 ResultSet Type is

TYPE_FETCH_FORWARD,

direction can only be

FETCH_FORWARD

Explanation: The result set type has been set to

TYPE_FORWARD_ONLY, but the

setFetchDirection() method has been called with

a value other than FETCH_FORWARD. The

direction specified must be consistent with the

result type specified.

-79766 Incorrect Fetch Size value

Explanation: The Statement.setFetchSize()

method has been called with an invalid value.

Verify that the value passed in is greater than 0.

If the setMaxRows() method has been called, the

fetch size must not exceed that value.

-79767 ResultSet Type is

TYPE_FORWARD_ONLY

Explanation: A method such as

ResultSet.beforeFirst(), ResultSet.afterLast(),

ResultSet.first(), ResultSet.last(),

ResultSet.absolute(), ResultSet.relative(),

ResultSet.current(), or ResultSet.previous() has

been called, but the result set type is

TYPE_FORWARD_ONLY. Call only the

ResultSet.next() method if the result set type is

TYPE_FORWARD_ONLY.

-79768 Incorrect row value

Explanation: The ResultSet.absolute(int)

method has been called with a value of 0. The

parameter must be greater than 0.

-79769 A customized type map is

required for this data type

Explanation: You must register a customized

type map to use any opaque types.

-79770 Cannot find the SQLTypeName

specified in the SQLData or Struct

Explanation: The SQLTypename object you

specified in the SQLData or Struct class does not

exist in the database. Make sure that the type

name is valid.

F-6 IBM Informix JDBC Driver Programmer’s Guide

-79771 Input value is not valid

Explanation: The input value is not accepted for

this data type. Make sure this is a valid input for

this data type.

-79772 No more data to read or write.

Verify your SQLData class or

getSQLTypeName()

Explanation: This error occurs when a Java

user-defined routine attempts to read or set a

position beyond the end of the opaque type data

available from a data input stream.

User Response: Check the length and structure

of the opaque type carefully against the

data-input UDR code. The SQLTypeName object

that was returned by the getSQLTypeName()

method might also be incorrect.

-79774 Unable to create local file

Explanation: Large object data read from the

database server can be stored either in memory

or in a local file. If the LOBCACHE value is 0 or

the large object size is greater than the

LOBCACHE value, the large object data from the

database server is always stored in a file. In this

case, if a security exception occurs, IBM Informix

JDBC Driver makes no attempt to store the large

object into memory and throws this exception.

-79775 Only

TYPE_SCROLL_INSENSITIVE

and TYPE_FORWARD_ONLY are

supported

Explanation: IBM Informix JDBC Driver only

supports a result set type of

TYPE_SCROLL_INSENSITIVE and

TYPE_FORWARD_ONLY. Only these values

should be used.

-79776 Type requested (%s) does not

match row type information (%s)

type

Explanation: Row type information was

acquired either through the system catalogs or

through the supplied row definition. The row

data provided does not match this row element

type. The type information must be modified, or

the data must be provided.

-79777 readObject/writeObject() only

supports UDTs, Distincts and

complex types

Explanation: The SQLData.writeObject()

method was called for an object that is not a

user-defined, distinct, or complex type.

User Response: Verify that you have provided

customized type-mapping information.

-79778 Type mapping class must be a

java.util.Collection

implementation

Explanation: You provided a type mapping to

override the default for a set, list, or multiset

data type, but the class does not implement the

java.util.Collection interface.

-79780 Data within a collection must all

be the same Java class and length.

Explanation: Verify that all the objects in the

collection are of the same class.

-79781 Index/Count out of range

Explanation: Array.getArray() or

Array.getResultSet() was called with index and

count values. Either the index is out of range or

the count is too big.

User Response: Verify that the number of

elements in the array is sufficient for the index

and count values.

-79782 Method can be called only once

Explanation: Make sure methods such as

Statement.getUpdateCount() and

Statement.getResultSet() are called only once per

result.

Error Messages F-7

-79783 Encoding or code set not

supported

Explanation: The encoding or code set entered

in the DB_LOCALE or CLIENT_LOCALE

variable is not valid.

User Response: Check “Support for Code-Set

Conversion” on page 6-11 for valid code sets.

-79784 Locale not supported

Explanation: The locale entered in the

DB_LOCALE or CLIENT_LOCALE variable is

not valid.

User Response: Check “Support for Code-Set

Conversion” on page 6-11 for valid locales.

-79785 Unable to convert JDBC escape

format date string to localized

date string

Explanation: The JDBC escape format for date

values must be specified in the format

{d ’yyyy-mm-dd’}. Verify that the JDBC escape

date format specified is correct.

User Response: Verify the DBDATE and

GL_DATE settings for the correct date string

format if either of these was set to a value in the

connection database URL string or property list.

-79786 Unable to build a Date object

based on localized date string

representation

Explanation: The localized date string

representation specified in a char, varchar, or

lvarchar column is not correct, and a date object

cannot be built based on the year, month, and

day values.

User Response: Verify that the date string

representation conforms to the DBDATE or

GL_DATE date formats if either one of these is

specified in a connection database URL string or

property list. If neither DBDATE or GL_DATE is

specified but a CLIENT_LOCALE or

DB_LOCALE is explicitly set in a connection

database URL string or property list, verify that

the date string representation conforms to the

JDK short default format (DateFormat.SHORT).

-79788 User name must be specified

Explanation: The user name is required to

establish a connection with IBM Informix JDBC

Driver.

User Response: Make sure you pass in

user=your_user_name as part of the database

URL or one of the properties.

-79789 Server does not support GLS

variables DB_LOCALE,

CLIENT_LOCALE or GL_DATE

Explanation: These variables can only be used if

the database server supports GLS.

User Response: Check the documentation for

your database server version and omit these

variables if they are not supported.

-79790 Invalid complex type definition

string

Explanation: The value returned by the

getSQLTypeName() method is either null or

invalid.

User Response: Check the string to verify that

it is either a valid named-row name or a valid

row type definition.

-79792 Row must contain data

Explanation: The Array.getAttributes() or

Array.getAttributes(Map) method has returned 0

elements. These methods must return a nonzero

number.

-79793 Data in array does not match

getBaseType() value

Explanation: The Array.getArray() or

Array.getArray(Map) method has returned an

array where the element type does not match the

JDBC base type.

F-8 IBM Informix JDBC Driver Programmer’s Guide

-79794 Row length provided (%s) doesn’t

match row type information (%s)

Explanation: Data in the row does not match

the length in the row type information. You do

not have to pad string lengths to match what is

in the row definition, but lengths for other data

types should match.

-79795 Row extended id provided (%s)

doesn’t match row type

information (%s)

Explanation: The extended ID of the object in

the row does not match the extended ID as

defined in row type information.

User Response: Either update the row

information (if you are providing the row

definition) or check the type mapping

information.

-79796 Cannot find UDT, distinct or

named row (%s) in database

Explanation: The getSQLTypeName() method

has returned a name that can not be found in the

database.

User Response: Verify that the Struct or

SQLData object returns the correct information.

-79797 DBDATE setting must be at least

4 characters and no longer than 6

characters

Explanation: This error occurs because the

DBDATE format string that is passed to the

database server either has too few characters or

too many.

User Response: To fix the problem, verify the

DBDATE format string with the user

documentation and make sure that the correct

year, month, day, and possibly era parts of the

DBDATE format string are correctly identified.

-79798 A numerical year expansion is

required after ’Y’ character in

DBDATE string

Explanation: This error occurs because the

DBDATE format string has a year designation

(specified by the character Y), but there is no

character following the year designation to

denote the numerical year expansion (2 or 4).

User Response: To fix the problem, modify the

DBDATE format string to include the numerical

year expansion value after the Y character.

-79799 An invalid character is found in

the DBDATE string after the ’Y’

character

Explanation: This error occurs because the

DBDATE format string has a year designation

(specified by the character Y), but the character

following the year designation is not a 2 or 4 (for

two-digit years and four-digit years,

respectively).

User Response: To fix the problem, modify the

DBDATE format string to include the required

numerical year expansion value after the Y

character. Only a 2 or 4 character should

immediately follow the Y character designation.

-79800 No ’Y’ character is specified

before the numerical year

expansion value

Explanation: This error occurs because the

DBDATE format string has a numerical year

expansion (2 or 4 to denote two-digit years or

four-digit years, respectively), but the year

designation character (Y) was not found

immediately before the numerical year expansion

character specified.

User Response: To fix the problem, modify the

DBDATE format string to include the required Y

character immediately before the numerical year

expansion value requested.

Error Messages F-9

-79801 An invalid character is found in

DBDATE format string

Explanation: This error occurs because the

DBDATE format string has a character that is

not allowed.

User Response: To fix the problem, modify the

DBDATE format string to only include the

correct date part designations: year (Y), numerical

year expansion value (2 or 4), month (M), and day

(D). Optionally, you can include an era

designation (E) and a default separator character

(hyphen, dot, or slash), which is specified at the

end of the DBDATE format string. Refer to the

user documentation for further information on

correct DBDATE format string character

designations.

-79802 Not enough tokens are specified

in the string representation of a

date value

Explanation: This error occurs because the date

string specified does not have the minimum

number of tokens or separators needed to form a

valid date value (composed of year, month, and

day numerical parts). For example, 12/15/98 is a

valid date string representation with the slash

character as the separator or token. But 12/1598

is not a valid date string representation, because

there are not enough separators or tokens.

User Response: To fix the problem, modify the

date string representation to include a valid

format for separating the day, month, and year

parts of a date value.

-79803 Date string index out of bounds

during date format parsing to

build Date object

Explanation: This error occurs because there is

not a one-to-one correspondence between the

date string format required by DBDATE or

GL_DATE and the actual date string

representation you defined. For example, if

GL_DATE is set to %b %D %y and you specify a

character string of Oct, there is a definite

mismatch between the format required by

GL_DATE and the actual date string.

User Response: To fix the problem, modify the

date string representation of the DBDATE or

GL_DATE setting so that the date format

specified matches one-to-one with the required

date string representation.

-79804 No more tokens are found in

DBDATE string representation of

a date value

Explanation: This error occurs because the date

string specified does not have any more tokens

or separators needed to form a valid date value

(composed of year, month, and day numerical

parts) based on the DBDATE format string. For

example, 12/15/98 is a valid date string

representation when DBDATE is set to MDY2/.

But 12/1598 is not a valid date string

representation, because there are not enough

separators or tokens.

User Response: To fix the problem, modify the

date string representation to include a valid

format for separating the day, month, and year

parts of a date value based on the DBDATE

format string setting.

-79805 No era designation found in

DBDATE/GL_DATE string

representation of date value

Explanation: This error occurs because the date

string specified does not have a valid era

designation, as required by the DBDATE or

GL_DATE format string setting. For example, if

DBDATE is set to Y2MDE-, but the date string

representation specified by the user is 98-12-15,

this is an error because there is no era

designation at the end of the date string value.

User Response: To fix the problem, modify the

date string representation to include a valid era

designation based on the DBDATE or GL_DATE

format string setting. In this example, a date

string representation of 98-12-15 AD would

probably suffice, depending on the locale.

F-10 IBM Informix JDBC Driver Programmer’s Guide

-79806 Numerical day value can not be

determined from date string based

on DBDATE

Explanation: This error occurs because the date

string specified does not have a valid numerical

day designation as required by the DBDATE

format string setting. For example, if DBDATE is

set to Y2MD-, but the date string representation

you specify is 98-12-blah, this is an error,

because blah is not a valid numerical day

representation.

User Response: To fix the problem, modify the

date string representation to include a valid

numerical day designation (from 1 to 31) based

on the DBDATE format string setting.

-79807 Numerical month value can not

be determined from date string

based on DBDATE

Explanation: This error occurs because the date

string specified does not have a valid numerical

month designation as required by the DBDATE

format string setting. For example, if DBDATE is

set to Y2MD-, but the date string representation

you specify is 98-blah-15, this is an error,

because blah is not a valid numerical month

representation.

User Response: To fix the problem, modify the

date string representation to include a valid

numerical month designation (from 1 to 12)

based on the DBDATE format string setting.

-79808 Not enough tokens specified in

%D directive representation of

date string

Explanation: This error occurs because the date

string specified does not have the correct number

of tokens or separators needed to form a valid

date value based on the GL_DATE %D directive

(mm/dd/yy format). For example, 12/15/98 is a

valid date string representation based on the

GL_DATE %D directive, but 12/1598 is not a

valid date string representation, because there are

not enough separators or tokens.

User Response: To fix the problem, modify the

date string representation to include a valid

format for the GL_DATE %D directive.

-79809 Not enough tokens specified in

%x directive representation of

date string

Explanation: This error occurs because the date

string specified does not have the correct number

of tokens or separators needed to form a valid

date value based on the GL_DATE %x directive

(format required is based on day, month, and

year parts, and the ordering of these parts is

determined by the specified locale). For example,

12/15/98 is a valid date string representation

based on the GL_DATE %x directive for the U.S.

English locale, but 12/1598 is not a valid date

string representation because there are not

enough separators or tokens.

User Response: To fix the problem, modify the

date string representation to include a valid

format for the GL_DATE %x directive based on

the locale.

-79810 This release of JDBC requires to

be run with JDK 1.2+

Explanation: IBM Informix JDBC Driver

Version 2.x requires a JDK version of 1.2 or

greater.

-79811 Connection without

user/password not supported

Explanation: You called the getConnection()

method for the DataSource object, and the user

name or the password is null.

User Response: Use the user name and

password arguments of the getConnection()

method or set these values in the DataSource

object.

-79812 User/Password does not match

with datasource

Explanation: You called the getConnection(user,

passwd) method for the DataSource object, and

the values you supplied did not match the

values already found in the data source.

Error Messages F-11

-79814 Blob/Clob object is either closed

or invalid

Explanation: If you retrieve a smart large object

using the ResultSet.getBlob() or

ResultSet.getClob() method or create one using

the IfxBlob() or IfxCblob() constructor, a smart

large object is opened. You can then read from or

write to the smart large object. After you execute

the IfxBlob.close() method, do not use the smart

large object handle for further read/write

operations, or this exception is thrown.

-79815 Not in Insert mode. Need to call

moveToInsertRow() first

Explanation: You tried to use the insertRow()

method, but the mode is not set to Insert.

User Response: Call the moveToInsertRow()

method before calling insertRow().

-79816 Cannot determine the table name

Explanation: The table name in the query is

either incorrect or refers to a table that does not

exist.

-79817 No serial, rowid, or primary key

specified in the statement

Explanation: The updatable scrollable feature

works only for tables that have a SERIAL

column, a primary key, or a row ID specified in

the query. If the table does not have any of the

above, an updatable scrollable cursor cannot be

created.

-79818 Statement concurrency type is not

set to CONCUR_UPDATABLE

Explanation: You tried to call the insertRow(),

updateRow(), or deleteRow() method for a

statement that has not been created with the

CONCUR_UPDATABLE concurrency type.

User Response: Re-create the statement with

this type set for the concurrency attribute.

-79819 Still in Insert mode. Call

moveToCurrentRow() first

Explanation: You cannot call the updateRow()

or deleteRow() method while still in Insert

mode. Call the moveToCurrentRow() method

first.

-79820 Function contains an output

parameter

Explanation: You have passed in a statement

that contains an OUT parameter, but you have

not used the driver’s

CallableStatement.registerOutParameter() and

getXXX() methods to process the OUT parameter.

-79821 Name unneccessary for this data

type

Explanation: If you have a data type that

requires a name (an opaque type or complex

type) you must call a method that has a

parameter for the name, such as the following

methods:

public void IfxSetNull(int i, int ifxType,

 String name)

public void registerOutParameter

 (int parameterIndex,

 int sqlType, java.lang.String name);

public void IfxRegisterOutParameter

 (int parameterIndex,

 int ifxType, java.lang.String name);

The data type you have specified does not require

a name.

User Response: Use another method that does

not have a type parameter.

-79822 OUT parameter has not been

registered

Explanation: The function specified using the

CallableStatement interface has an OUT

parameter that has not been registered.

User Response: Call one of the

registerOutParameter() or

IfxRegisterOutParameter() methods to register

F-12 IBM Informix JDBC Driver Programmer’s Guide

the OUT parameter type before calling the

executeQuery() method.

-79823 IN parameter has not been set

Explanation: The function specified using the

CallableStatement interface has an IN parameter

that has not been set.

User Response: Call the setNull() or

IfxSetNull() method if you want to set a null IN

parameter. Otherwise, call one of the set methods

inherited from the PreparedStatement interface.

-79824 OUT parameter has not been set

Explanation: The function specified using the

CallableStatement interface has an OUT

parameter that has not been set.

User Response: Call the setNull() or

IfxSetNull() method if you want to set a null

OUT parameter. Otherwise, call one of the set

methods inherited from the PreparedStatement

interface.

-79825 Type name is required for this

data type

Explanation: This data type is an opaque type,

distinct type, or complex type, and it requires a

name.

User Response: Use set methods for IN

parameters and register methods for OUT

parameters that take a type name as a parameter.

-79826 Ambiguous java.sql.Type, use

IfxRegisterOutParameter()

Explanation: The SQL type specified either has

no mapping to an Informix data type or has

more than one mapping.

User Response: Use one of the

IfxRegisterOutParameter() methods to specify

the Informix data type.

-79827 Function doesn’t have an output

parameter

Explanation: This function does not have an

OUT parameter, or this function has an OUT

parameter whose value the server version does

not return. None of the methods in the

CallableStatement interface apply. Use the

inherited methods from the PreparedStatement

interface.

-79828 Function parameter specified isn’t

an OUT parameter

Explanation: Informix functions can have only

one OUT parameter, and it is always the last

parameter.

-79829 Invalid directive used for the

GL_DATE environment variable

Explanation: One or more of the directives

specified by the GL_DATE environment variable

is not allowed. Refer to “GL_DATE Variable” on

page 6-4 for a list of the valid directives for a

GL_DATE format.

-79830 Insufficient information given for

building a Time or Timestamp

Java object.

Explanation: To perform string-to-binary

conversions correctly for building a

java.sql.Timestamp or java.sql.Time object, all

the DATETIME fields must be specified for the

chosen date string representation. For

java.sql.Timestamp objects, the year, month, day,

hour, minute, and second parts must be specified

in the string representation. For java.sql.Time

objects, the hour, minute, and second parts must

be specified in the string representation.

-79831 Exceeded maximum no. of

connections configured for

Connection Pool Manager

Explanation: If you repeatedly connect to a

database using a DataSource object without

closing the connection, connections accumulate.

When the total number of connections for the

Error Messages F-13

DataSource object exceeds the maximum limit

(100), this error is thrown.

-79834 Distributed transactions (XA) are

not supported by this database

server.

Explanation: This error occurs when the user

calls the method XAConnection.getConnection()

against an XPS server.

-79836 Proxy Error: No database

connection

Explanation: This error is thrown by the

Informix HTTP Proxy if you try to communicate

with the database on an invalid or bad database

connection.

User Response: Make sure your application has

opened a connection to the database, check your

Web server and database error logs.

-79837 Proxy Error: Input/output error

while communicating with

database

Explanation: This error is thrown by the

Informix HTTP Proxy if an error is detected

while the proxy is communicating with the

database. This error can occur if your database

server is not accessible.

User Response: Make sure your database is

accessible, check your database and Web server

error logs.

-79838 Cannot execute change permission

command (chmod/attrib).

Explanation: The driver is unable to change the

permissions on the client JAR file. This could

happen if your client platform does not support

the chmod or attrib command, or if the user

running the JDBC application does not have the

authority to change access permissions on the

client JAR file.

User Response: Make sure that the chmod or

attrib command is available for your platform

and that the user running the application has the

authority to change access permissions on the

client JAR file.

-79839 Same Jar SQL name already exists

in the system catalog.

Explanation: The JAR filename specified when

your application called UDTManager.createJar()

has already been registered in the database

server.

User Response: Use

UDTMetaData.setJarFileSQLName() to specify a

different SQL name for the JAR file.

-79840 Unable to copy jar file from client

to server.

Explanation: This error occurs when the

pathname set using setJarTmpPath() is not

writable by user informix or the user specified in

the JDBC connection.

User Response: Make sure the pathname is

readable and writable by any user.

-79842 No UDR information was set in

UDRMetaData.

Explanation: Your application called the

UDRManager.createUDRs() method without

specifying any UDRs for the database server to

register.

User Response: Specify UDRs for the database

server to register by calling the

UDRMetaData.setUDR() method before calling

the UDRManager.createUDRs() method.

-79843 SQL name of the jar file was not

set in UDR/UDT MetaData.

Explanation: Your application called either the

UDTManager.createUDT() or the

UDRManager.createUDRs() method without

specifying an SQL name for the JAR file

containing the opaque types or UDRs for the

database server to register.

User Response: Specify an SQL name for a JAR

file by calling the

UDTMetaData.setJarFileSQLName() or

F-14 IBM Informix JDBC Driver Programmer’s Guide

UDRMetaData.setJarFileSQLName() method

before calling the UDTManager.createUDT() or

UDRManager.createUDRs() method.

-79844 Can’t create/remove UDT/UDR as

no database is specified in the

connection.

Explanation: Your application created a

connection without specifying a database. The

following example establishes a connection and

opens a database named test:

url = "jdbc:informix-sqli:myhost:1533/test:"

+

"informixserver=myserver;user=rdtest;

 password=test";

conn = DriverManager.getConnection(url);

The following example establishes a connection

with no database open:

url = "jdbc:informix-sqli:myhost:1533:"

+

"informixserver=myserver;user=rdtest;

 password=test";

conn = DriverManager.getConnection(url);

User Response: To resolve this problem, use the

following SQL statements after the connection is

established and before calling the createUDT() or

createUDRs() methods:

Statement stmt = conn.createStatement();

stmt.executeUpdate("create database test

 ...");

Alternatively, use the following code:

stmt.executeUpdate("database test");

-79845 JAR file on the client does not

exist or can’t be read.

Explanation: This error occurs for one of the

following reasons:

v You failed to create a client JAR file.

v You specified an incorrect pathname for the

client JAR file.

v The user running the JDBC application or the

user specified in the connection does not have

permission to open or read the client JAR file.

-79846 Invalid JAR file name.

Explanation: The client JAR file your

application specified as the second parameter to

UDTManager.createUDT() or

UDRManager.createUDRs() must end with the

.jar extension.

-79847 The ’javac’ or ’jar’ command

failed.

Explanation: The driver encountered

compilation errors in one of the following cases:

v Compiling .class files into .jar files, using the

jar command, in response to a createJar()

command from the JDBC application

v Compiling .java files into .class files and .jar

files, using the javac and jar commands, in

response to a UDTManager.createUDTClass()

method call from the JDBC application.

-79848 Same UDT SQL name already

exists in the system catalog.

Explanation: Your application called

UDTMetaData.setSQLName() and specified a

name that is already in the database server.

-79849 UDT SQL name was not set in

UDTMetaData.

Explanation: Your application failed to call

UDTMetaData.setSQLName() to specify an SQL

name for the opaque type.

-79850 UDT field count was not set in

UDTMetaData.

Explanation: Your application called

UDTManager.createUDTClass() without first

specifying the number of fields in the internal

data structure that defines the opaque type.

User Response: Specify the number of fields by

calling UDTMetaData.setFieldCount().

Error Messages F-15

-79851 UDT length was not set in

UDTMetaData.

Explanation: Your application called

UDTManager.createUDTClass() without first

specifying a length for the opaque type.

User Response: Specify the total length for the

opaque type by calling

UDTMetaData.setLength().

-79852 UDT field name or field type was

not set in UDTMetaData.

Explanation: Your application called

UDTManager.createUDTClass() without first

specifying a field name and data type for each

field in the data structure that defines the opaque

type.

User Response: Specify the field name by

calling UDTMetaData.setFieldName(); specify a

data type by calling

UDTMetaData.setFieldType().

-79853 No class files to be put into the

jar.

Explanation: Your application called the

createJar() method and passed a zero-length

string for the classnames parameter. The method

signature is as follows:

createJar(UDTMetaData mdata, String[]

 classnames)

-79854 UDT java class must implement

java.sql.SQLData interface.

Explanation: Your application called

UDTManager.createUDT() to create an opaque

type whose class definition does not implement

the java.sql.SQLData interface. UDTManager

cannot create an opaque type from a class that

does not implement this interface.

-79855 Specified UDT java class is not

found.

Explanation: Your application called the

UDTManager.createUDT() method but the

driver could not find a class with the name you

specified for the third parameter.

-79856 Specified UDT does not exists in

the database.

Explanation: Your application called

UDTManager.removeUDT(String sqlname) to

remove an opaque type named sqlname from the

database, but the opaque type with that name

does not exist in the database.

-79857 Invalid support function type.

Explanation: This error occurs only if your

application called the

UDTMetaData.setSupportUDR() method and

passed an integer other than 0 through 7 for the

type parameter.

User Response: Use the constants defined for

the support UDR types. For more information,

see “Using setSupportUDR() and setUDR()” on

page 5-20.

-79858 The command to remove file on

the client failed.

Explanation: If UDTMetaData.keepJavaFile() is

not called or is set to FALSE, the driver removes

the generated .java file when the

UDTManager.createUDTClass() method

executes. This error results if the driver was

unable to remove the .java file.

-79859 Invalid UDT field number.

Explanation: Your application called a

UDTMetaData.setXXX() or

UDTMetaData.getXXX() method and specified a

field number that was less than 0 or greater than

the value set through the

UDTMetaData.setFieldCount() method.

-79860 Ambiguous java type(s) - can’t use

Object/SQLData as method

argument(s).

Explanation: One or more parameters of the

method to be registered as a UDR is of type

java.lang.Object or java.sql.SQLData. These Java

F-16 IBM Informix JDBC Driver Programmer’s Guide

data types can be mapped to more than one

Informix data type, so the driver is unable to

choose a type.

User Response: Avoid using java.lang.Object

or java.sql.SQLData as method arguments.

-79861 Specified UDT field type has no

Java type match.

Explanation: Your application called

UDTMetaData.setFieldType() and specified a

data type that has no 100 percent match in Java.

The following data types are in this category:

IfxTypes.IFX_TYPE_BYTE

IfxTypes.IFX_TYPE_TEXT

IfxTypes.IFX_TYPE_VARCHAR

IfxTypes.IFX_TYPE_NVCHAR

IfxTypes.IFX_TYPE_LVARCHAR

User Response: Use IFX_TYPE_CHAR or

IFX_TYPE_NCHAR instead; these data types

map to java.lang.String.

-79862 Invalid UDT field type.

Explanation: Your application called

UDTMetaData.setFieldType() and specified an

unsupported data type for the opaque type. For

supported data types, see “Mapping for Field

Types” on page C-18.

-79863 UDT field length was not set in

UDTMetaData.

Explanation: Your application specified a field

of character, date-time, or interval type by calling

UDTMetaData.setFieldType(), but failed to

specify a field length. Call

UDTMetaData.setFieldLength() to set a field

length.

-79864 Statement length exceeds the

maximum

Explanation: Your application issued an SQL

PREPARE, DECLARE, or EXECUTE

IMMEDIATE statement that is longer than the

database server can handle. The limit differs with

different implementations, but in most cases is

up to 32,000 characters.

User Response: Review the program logic to

ensure that an error has not caused your

application to present a string that is longer than

intended. If the text has the intended length,

revise the application to present fewer statements

at a time.

 This is the same as error -460 returned by the

database server.

-79865 Statement already closed

Explanation: This error occurs when an

application attempts to access a statement

method after the stmt.close() method.

-79868 ResultSet not open, operation not

permitted

Explanation: This error occurs when an

application attempts to access a ResultSet

method after the ResultSet.close() method.

-79877 Invalid parameter value for

setting maximum field size to a

value less than zero

Explanation: This error occurs when an

application attempts to set the maximum field

size to a value less than zero.

-79878 ResultSet not open, operation next

not permitted. Verify that

autocommit is OFF

Explanation: This error occurs when an

application attempts to access the

ResultSet.next() method without executing a

result set query.

-79879 An unexpected exception was

thrown. See next exception for

details

Explanation: This error occurs when a non-SQL

exception occurs; for example, an IO exception.

Error Messages F-17

-79880 Unable to set JDK Version for the

Driver.

Explanation: This error occurs when the driver

cannot obtain the JDK version from the Java

virtual machine.

-79881 Already in local transaction, so

cannot start XA transaction.

Explanation: This error occurs when the

application attempts to start an XA transaction

while a local transaction is still in progress.

F-18 IBM Informix JDBC Driver Programmer’s Guide

Notices

IBM may not offer the products, services, or features discussed in this

document in all countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any

other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1996, 2004 G-1

improvements and/or changes in the product(s) and/or the program(s)

described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Program License Agreement, or any equivalent

agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments

may vary significantly. Some measurements may have been made on

development-level systems and there is no guarantee that these measurements

will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results

may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

G-2 IBM Informix JDBC Driver Programmer’s Guide

All statements regarding IBM’s future direction or intent are subject to change

or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are

subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are

written. These examples have not been thoroughly tested under all conditions.

IBM, therefore, cannot guarantee or imply reliability, serviceability, or function

of these programs. You may copy, modify, and distribute these sample

programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs

conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,

must include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years).

All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Notices G-3

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database

Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix®;

C-ISAM®; Foundation.2000™; IBM Informix

® 4GL; IBM

Informix®DataBlade®Module; Client SDK™; Cloudscape™; Cloudsync™; IBM

Informix®Connect; IBM Informix®Driver for JDBC; Dynamic Connect™; IBM

Informix®Dynamic Scalable Architecture™(DSA); IBM Informix®Dynamic

Server™; IBM Informix®Enterprise Gateway Manager (Enterprise Gateway

Manager); IBM Informix®Extended Parallel Server™; i.Financial Services™;

J/Foundation™; MaxConnect™; Object Translator™; Red Brick™; IBM

Informix® SE; IBM Informix® SQL; InformiXML™; RedBack®; SystemBuilder™;

U2™; UniData®; UniVerse®; wintegrate®are trademarks or registered

trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other

countries.

UNIX is a registered trademark in the United States and other countries

licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be

trademarks or service marks of others.

G-4 IBM Informix JDBC Driver Programmer’s Guide

Index

Special characters
.java file, retaining 5-17

Numerics
5.x database servers 2-19

A
absolute() method 3-5, F-4, F-6

Accessibility xxviii

dotted decimal format of syntax diagrams D-1

syntax diagrams, reading in a screen reader D-1

Accessing a database remotely 2-27

activateHDRPool_Primary() method 7-9

activateHDRPool_Secondary() method 7-9

addBatch() method 3-16

addProp() method B-1

afterLast() method F-6

Alignment values 5-15

Anonymous search of sqlhosts information 2-21

APPLET tag 1-12

Applets
and database access 2-27

unsigned, features unavailable for 1-12

using IBM Informix JDBC Driver in 1-12, 2-3

ARCHIVE attribute of APPLET tag 1-12

Array class 4-19

ArrayList class 4-16

Arrays 4-16, 4-19

Autocommit 3-18

autofree.java example program 7-4, A-2

Automatically freeing the cursor 3-23, 7-4

B
Batch updates to the database 3-6

BatchUpdate.java example program 3-6, A-2

BatchUpdateException interface 3-6

beforeFirst() method F-4, F-6

BEGIN WORK statement 4-61

BIG_FET_BUF_SIZE environment variable 2-13, 7-1

Binary qualifiers for INTERVAL data types 4-10

BLOB and CLOB data types, accessing 4-33

BLOB and CLOB example programs A-5

BLOB data type
caching 4-5, 4-62, 7-2

definition of 4-41

examples of
creation 4-62

data retrieval 4-64

extensions for 4-33

BLOB data type (continued)
format of 4-41

Boldface type xix

BOOLEAN data type C-4

Browsers 1-12

Bulk inserts 3-7

BulkInsert.java example program 3-7

BYTE and TEXT example programs A-5

Byte array, converting to hexadecimal 4-46

BYTE data type
caching 7-2

examples for
data inserts and updates 4-6

data retrieval 4-7

extensions for 4-5

ByteType.java example program 4-6, 4-8, A-2

C
Caching large objects 7-2

Caching type information 4-32, 5-5

CallableStatement interface 3-2, 3-7, F-13

CallOut1.java example program A-2

CallOut2.java example program A-2

CallOut3.java example program A-2

CallOut4.java example program A-2

cancel() method 3-17

Catalogs
IBM Informix JDBC Driver interpretation 3-23

systables 3-22, 6-11, 6-13

charattrUDT.java example program A-6

Class name 5-16

Classes
Array 4-19

ArrayList 4-16

extensibleObject 2-20

HashSet 4-16, 4-17

helper 1-5

IfmxStatement 3-23

IfxBblob 4-42

IfxCblob 4-42

IfxConnectionEventListener 1-3

IfxConnectionPoolDataSource 1-3, B-1

IfxCoreDataSource 1-3

IfxDataSource 1-3, B-1

IfxDriver 2-3

IfxJDBCProxy 2-28

IfxLobDescriptor 4-37

IfxLocator 4-47

IfxPooledConnection 1-3

IfxTypes C-6, C-10

© Copyright IBM Corp. 1996, 2004 X-1

Classes (continued)
IfxUDTManager 5-7

IfxUDTMetaData 5-7

IfxXADataSource 1-3

Interval 4-10

IntervalDF 4-14

IntervalYM 4-12

Java.Socket 2-23

Locale 6-2

Message 3-21

Properties 2-12

ResultSet 6-5, 6-8

SessionMgr 2-28

SQLException 3-19, 3-20, 3-21, C-12, C-15

SqlhDelete 2-23

SqlhUpload 2-22

TimeoutMgr 2-28

TreeSet 4-18

UDRManager 5-7

UDRMetaData 5-7

Version 3-24

Classes implemented 1-3

beyond Java specification 1-5

extending Java specification 1-4

Java interfaces 1-3

ClassGenerator utility 1-6, 4-30, A-10

CLASSPATH environment variable 1-10, 3-25, 4-30

Cleaning connections 7-9

CLIENT_LOCALE environment variable 6-3, 6-10

CLOB data type
caching 4-5, 4-62, 7-2

code set conversion 6-14

definition of 4-41

examples of
creation 4-62

data retrieval 4-64

extensions for 4-33

format of 4-41

Clob::setAsciiStream(long position, InputStream fin, int

length) method 6-15

close() method 2-14, 2-18, 3-3, 7-4

Code sets
conversion of 6-11, 6-14

converting TEXT data types 6-14

synchronizing with locales 6-2

table of 6-11

user-defined 6-16

Code, sample, conventions for xxiv

codeset conversion 6-15

Collection data types
examples of

using the array interface 4-19

using the collection interface 4-17

extensions for 4-16

in named and unnamed rows 4-21

Collection interface 4-16

com.informix.jdbc.Message class 3-23

Command-line conventions
how to read xxii

sample diagram xxii

COMMIT WORK statement 4-61

commit() method 3-19

Compliance
with industry standards xxxi

Concurrency and multiple threads 3-4

connect() method F-3

Connection interface 3-3, 3-18

Connection pool 7-5

cleaning connections 7-9

demo program 7-7

example programs A-8

properties for B-6

Sun JDBC 3.0 properties 7-8

tuning parameters 7-6

using 7-5

with HDR 7-8

Connection Pool Manager 7-6

properties B-6

Connection pooling 1-3, 2-2, 2-5, B-1

Connection properties
DATABASE 2-4

IFXHOST 2-4

INFORMIXSERVER 2-4

PASSWORD 2-5, 2-9

PORTNO 2-4

USER 2-4, 2-9

Connection.close() method 2-38

ConnectionEventListener interface 1-3

ConnectionPoolDataSource B-6

ConnectionPoolDataSource interface 1-3

ConnectionPoolDataSource object 7-5

Connections
cleaning 7-9

creating using a DataSource object 2-3

creating using DriverManager. getConnection() 2-6

to a database with non-ASCII characters 6-14

Console mode 1-8

Constructors
IfxBblob() 4-42

IfxCblob() 4-42

IfxLobDescriptor() 4-37

IfxLocator() 4-37

IntervalDF() 4-14

IntervalYM() 4-12

Contact information xxxii

Conventions
command-line xxii

documentation xix

sample-code xxiv

syntax diagrams xx

X-2 IBM Informix JDBC Driver Programmer’s Guide

Conventions (continued)
syntax notation xx

typographical xix

Converting
IfxLocator to hexadecimal 4-46

CORBA 2-32

Create opaque type from existing code 5-19

createJar() method 5-17

createTypes.java example program A-6

createUDRs() method 5-22

createUDT() method 5-18

createUDTClass() method 5-17

Creating opaque type without preexisting class 5-13

Creating smart large objects 4-36

CSM environment variable 2-13

current() method F-6

Cursors
automatically freeing 2-14, 3-23, 7-4

hold 3-5

scroll 3-4

D
Data integrity 4-56

Data types
BLOB 7-2

BOOLEAN C-4

BYTE 4-5, 7-2

CLOB 7-2

collection 4-16

DataBlade API 5-5

distinct 4-2

INTERVAL 4-10

LVARCHAR C-3, C-14

mapping
for CallableStatement parameters 3-12

opaque data types 5-5

named row 4-20

opaque 5-2

and transactions 5-25

SERIAL 4-9

SERIAL8 4-9

TEXT 4-5, 7-2

unnamed row 4-20

DATABASE environment variable 2-4, 2-9

database local codeset 6-15

Database server name
setting in database URLs 2-9

setting in DataSource objects 2-4

DatabaseMetaData interface 3-21, 3-24

DatabaseMetaData methods 3-21

Databases
batch updates of 3-6

names of, setting
in database URLs 2-9

in DataSource objects 2-4

Databases (continued)
querying 3-2

remote access options 2-27

specifying the locale of 6-3

URL 2-6, 2-7

with non-ASCII characters 6-14

DataBlade API data types 5-5

DataSource interface
example of A-1

extensions of B-1

Informix classes supporting 1-3

standard properties 2-4, B-2

Dates
DBDATE formats of 6-6

formatting directives for 6-4

four-digit year expansion 6-8

GL_DATE formats of 6-4

inserting values 6-5, 6-7

native SQL formats of 6-5, 6-7

nonnative SQL formats of 6-5, 6-7

precedence rules for end-user formats 6-10

represented by strings 6-6

retrieving values 6-5, 6-8

string-to-date conversion 6-8

support for end-user formats 6-3

DB_LOCALE environment variable 6-3, 6-10

DBANSIWARN environment variable 2-13

DBCENTURY environment variable 6-3, 6-8

DBCENTURYSelect.java example program 6-10, A-2

DBCENTURYSelect2.java example program 6-10, A-2

DBCENTURYSelect3.java example program 6-10, A-3

DBCENTURYSelect4.java example program 6-10, A-3

DBCENTURYSelect5.java example program 6-10, A-3

DBConnection.java example program 2-11, A-3

DBDATE environment variable 6-3, 6-6, 6-10

DBDATESelect.java example program A-3

DBMetaData.java example program A-3

DBSPACETEMP environment variable 2-13

DBTEMP environment variable 2-13

DBUPSPACE environment variable 2-14

Deallocating resources 3-3

Debugging 7-1

Default locale xv

deleteRow() method 3-5, F-12

deletesAreDetected() method 3-17

DELIMIDENT environment variable 2-14

Deploy parameter 5-18

Deployment descriptor 5-18

Describe input parameter xvii

DESCRIBE INPUT statement 3-14

Directives, formatting, for dates 6-4

Disabilities, visual
reading syntax diagrams D-1

dispValue() method 4-8

Index X-3

Distinct data types
caching type information 4-32, 5-5

examples for
inserting data 4-2

retrieving data 4-4

extensions for 4-2

unsupported methods for 4-5

distinct_d1.java example program A-6

distinct_d2.java example program A-6

Distributed transactions 1-3, 2-2, 2-5, 3-19

Documentation conventions xix

Documentation Notes xxvi

Documentation set of all manuals xxviii

Documentation, types of xxv

machine notes xxvi

online manuals xxviii

printed manuals xxviii

DOM (Document Object Model) 3-25

Dotted decimal format of syntax diagrams D-1

Driver interface 3-24

Driver restrictions, limitations 3-11

DriverManager interface 1-2, 2-3, 2-6, 2-12

Dynamic SQL 3-14

E
en_us.8859-1 locale xv

ENABLE_CACHE_TYPE environment variable 2-14,

4-32, 5-6

ENABLE_HDRSWITCH environment variable 2-14,

2-24

End-user formats for dates
precedence rules for 6-10

support for 6-3

Environment variables xix

BIG_FET_BUF_SIZE 2-13

CLASSPATH 1-10, 3-25, 4-30

CLIENT_LOCALE 6-3, 6-10

CSM 2-13

DATABASE 2-4, 2-9

DB_LOCALE 6-3, 6-10

DBANSIWARN 2-13

DBCENTURY 6-3, 6-8

DBDATE 6-3, 6-6, 6-10

DBSPACETEMP 2-13

DBTEMP 2-13

DBUPSPACE 2-14

DELIMIDENT 2-14

ENABLE_CACHE_TYPE 2-14, 4-32, 5-6

ENABLE_HDRSWITCH 2-14, 2-24

FET_BUF_SIZE 2-14, 7-2, A-4

GL_DATE 6-3, 6-4, 6-10

IFMX_CPM_AGELIMIT 7-7

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 7-7

IFMX_CPM_INIT_POOLSIZE 7-6

IFMX_CPM_MAX_CONNECTIONS 7-6

Environment variables (continued)
IFMX_CPM_MAX_POOLSIZE 7-7

IFMX_CPM_MIN_AGELIMIT 7-7

IFMX_CPM_MIN_POOLSIZE 7-6

IFMX_CPM_SERVICE_INTERVAL 7-7

IFX_AUTOFREE 2-14, 7-4, A-2

IFX_BATCHUPDATE_PER_SPEC 2-14, 3-6

IFX_CODESETLOB 2-14, 6-14, 6-15

IFX_DIRECTIVES 2-15

IFX_EXTDIRECTIVES 2-15

IFX_GET_SMFLOAT_AS_FLOAT 2-15

IFX_PADVARCHAR 2-16

IFX_SET_FLOAT_AS_SMFLOAT 2-16

IFX_USEPUT 2-16, 3-7

IFX_XASPEC 2-16

IFXHOST 2-4, 2-8, 2-17

IFXHOST_SECONDARY 2-17, 2-24

INFORMIXCONRETRY 2-17

INFORMIXCONTIME 2-17

INFORMIXOPCACHE 2-17

INFORMIXSERVER 2-4, 2-9, 2-10, 2-17

INFORMIXSERVER_SECONDARY 2-17, 2-24

INFORMIXSTACKSIZE 2-17

JDBCTEMP 2-17

LOBCACHE 2-18, 4-5, 4-62, 7-3

NEWCODESET 6-3, 6-17

NEWLOCALE 6-3, 6-17

NEWNLSMAP 2-18

NODEFDAC 2-18

OPT_GOAL 2-18

OPTCOMPIND 2-18

OPTOFC 2-18, 7-4, A-4

PATH 2-18

PDQPRIORITY 2-18

PLCONFIG 2-19

PLOAD_LO_PATH 2-19

PORTNO 2-4, 2-8

PORTNO_SECONDARY 2-19, 2-24

PROXY 2-19

PSORT_DBTEMP 2-19

PSORT_NPROCS 2-19

SECURITY 2-19

specifying 2-9, 2-12

SQLH_TYPE 2-19

STMT_CACHE 2-19

supported 6-2

USEV5SERVER 2-19

equals() method 4-13, 4-15

Error messages xxvii

Error Messages
localization of 6-18

RSAM 3-21

SQLCODE 3-21

standard Informix F-1

ErrorHandling.java example program 3-21, A-3

X-4 IBM Informix JDBC Driver Programmer’s Guide

Errors
handling 3-19

retrieving message text 3-21

retrieving syntax error offset 3-20

SQLException class, using 3-19

Escape syntax 3-16

Example programs
connection pool A-8

HDR A-10

proxy server A-8

XML documents A-9

Examples
autofree.java 7-4, A-2

BatchUpdate.java 3-6, A-2

BLOB and CLOB A-5

BLOB and CLOB data types
creation 4-62

data retrieval 4-64

BulkInsert.java 3-7

BYTE and TEXT A-5

BYTE and TEXT data types 4-6, 4-7

ByteType.java 4-6, 4-8, A-2

CallOut1.java A-2

CallOut2.java A-2

CallOut3.java A-2

CallOut4.java A-2

charattrUDT.java A-6

collection data types
using the array interface 4-19

using the collection interface 4-17

createTypes.java A-6

DataSource A-1

DBCENTURYSelect.java 6-10, A-2

DBCENTURYSelect2.java 6-10, A-2

DBCENTURYSelect3.java 6-10, A-3

DBCENTURYSelect4.java 6-10, A-3

DBCENTURYSelect5.java 6-10, A-3

DBConnection.java 2-11, A-3

DBDATESelect.java A-3

DBMetaData.java A-3

distinct data types
inserting data 4-2

retrieving data 4-4

distinct_d1.java A-6

distinct_d2.java A-6

ErrorHandling.java 3-21, A-3

GenericStruct.java A-7

GLDATESelect.java A-3

Intervaldemo.java 4-16, A-4

largebinUDT.java A-6

list1.java A-6

list2.java A-6

LOCALESelect.java A-4

locmsg.java 6-18, A-4

manualUDT.java A-6

Examples (continued)
MultiRowCall.java A-4

myMoney.java A-6

named and unnamed rows
creating a Struct class for 4-28

using the SQLData interface for a named

row 4-22

using the Struct interface 4-26

named row A-7

opaque data types
defining a class for 5-26

large objects 5-29

retrieving data 5-28

OptimizedSelect.java A-4

optofc.java 2-12, 7-4, A-4

OUT parameters 3-8

PropertyConnection.java A-4

row3.java A-7

RSMetaData.java A-4

ScrollCursor.java 3-5, A-4

Serial.java A-4

SimpleCall.java A-4

SimpleConnection.java A-4

SimpleSelect.java A-4

smart large object A-5

TextConv.java A-4

TextType.java 4-7, 4-8, A-4

UDR Manager A-10

UDT Manager A-10

udt_d1.java A-6

udt_d2.java A-6

udt_d3.java A-6

UpdateCursor1.java 3-5, A-4

UpdateCursor2.java 3-5, A-5

UpdateCursor3.java 3-5, A-5

user-defined routines 5-42

XML documents 3-29

execute() method 3-3, 3-17, 3-18, F-5

executeBatch() method F-5

executeQuery() method 3-3, 3-11, 3-12, 3-23

executeUpdate() method 2-11, 4-7, F-5

executeXXX() method F-3

extensibleObject class 2-20

F
FET_BUF_SIZE environment variable 2-14, 7-1, 7-2,

A-4

File interface 4-7

FileInputStream interface 4-7

Files
SessionMgr.class 2-28

FilesTimeoutMgr.class 2-28

first() method F-4, F-6

Fixed and Known Defects File xxvi

Formatting directives for dates 6-4

Index X-5

forName() method 2-3

Freeing cursors 2-14

fromHexString() method 4-47

fromString() method 4-13, 4-15

G
GenericStruct.java example program A-7

getAlignment() method 5-25

getArray() method 4-16, 4-20, F-8

getAsciiStream() method 4-7, 4-8, 4-41

getAttributes() method 4-28, F-8

getAutoAlignment() method 5-4

getAutoFree() method 3-23, 7-4

getBinaryStream() method 4-7, 4-8, 4-41

getBlob() method 4-41, 4-64, F-12

getBytes() method 4-41, 6-14, 6-15

getCatalogName() method 3-18

getCatalogs() method 3-23

getClassName() method 5-24

getClob() method 4-41, 4-64, F-12

getConnection() method 2-6, 2-10, 2-12, F-3

getCurrentPosition() method 5-4

getDatabaseName() method B-2

getDataSourceName() method B-3

getDate() method 6-9

getDescription() method B-2

getDriverMajorVersion() method 3-24

getDriverMinorVersion() method 3-24

getDsProperties() method B-1

getEndCode() method 4-11

getErrorCode() method 3-19

getFetchSize() method 3-17

getFieldCount() method 5-24

getFieldLength() method 5-24

getFieldName method 5-24

getFieldName() method 4-12

getFieldTypeName() method 5-24

getHDRtype() method 2-25

getIfxCLIENT_LOCALE() method B-3

getIfxCPMInitPoolSize() method B-7

getIfxCPMMaxAgeLimit() method B-7

getIfxCPMMaxConnections() method B-7

getIfxCPMMaxPoolSize() method B-7

getIfxCPMMinAgeLimit() method B-7

getIfxCPMMinPoolSize() method B-7

getIfxCPMServiceInterval() method B-7

getIfxCPMSwitchHDRPool() method B-7

getIfxCSM() method B-3

getIfxDB_LOCALE() method B-3

getIfxDBCENTURY() method B-3

getIfxDBDATE() method B-3

getIfxDBSPACETEMP() method B-3

getIfxDBTEMP() method B-3

getIfxDBUPSPACE() method B-3

getIfxFET_BUF_SIZE() method B-3

getIfxGL_DATE() method B-3

getIfxIFX_CODESETLOB() method B-4

getIfxIFX_DIRECTIVES() method B-4

getIfxIFX_EXTDIRECTIVES() method B-4

getIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT()

method B-4

getIfxIFX_ISOLATION_LEVEL() method B-4

getIfxIFX_LOCK_MODE_WAIT() B-4

getIfxIFX_LOCK_MODE_WAIT() method B-4

getIfxIFX_SET_FLOAT_AS_SMFLOAT() method B-4

getIfxIFX_XASPEC() method B-4

getIfxIFXHOST_SECONDARY() method B-4

getIfxIFXHOST() method B-4

getIfxINFORMIXCONRETRY() method B-4

getIfxINFORMIXCONTIME() method B-4

getIfxINFORMIXOPCACHE() method B-4

getIfxINFORMIXSERVER_SECONDARY() method B-4

getIfxINFORMIXSTACKSIZE() method B-4

getIfxJDBCTEMP() method B-4

getIfxLDAP_IFXBASE() method B-5

getIfxLDAP_PASSWD() method B-5

getIfxLDAP_URL() method B-5

getIfxLDAP_USER() method B-5

getIfxLOBCACHE() method B-5

getIfxNEWCODESET() method B-5

getIfxNEWLOCALE() method B-5

getIfxNEWNLSMAP() method B-5

getIfxNODEFDAC() method B-5

getIfxOPT_GOAL() method B-5

getIfxOPTCOMPIND() method B-5

getIfxOPTOFC() method B-5

getIfxPATH() method B-5

getIfxPDQPRIORITY() method B-5

getIfxPLCONFIG() method B-5

getIfxPLOAD_LO_PATH() method B-5

getIfxPORTNO_SECONDARY() method B-5

getIfxPROTOCOLTRACE() method B-5

getIfxPROTOCOLTRACEFILE() method B-5

getIfxPROXY() method B-6

getIfxPSORT_DBTEMP() method B-6

getIfxPSORT_NPROCS() method B-6

getIfxSECURITY() method B-6

getIfxSQLH_FILE() method B-6

getIfxSQLH_TYPE() method B-6

getIfxSTMT_CACHE() method B-6

getIfxTRACE() method B-6

getIfxTRACEFILE() method B-6

getIfxTypeName() method 4-12

getInputSource() method 3-28

getJarFileSQLName() method 5-24

getJDBCVersion() method 3-24

getLength() method 4-11, 5-24

getLocator() method 4-42, 4-64

getMajorVersion() method 3-24

getMessage() method 3-19

X-6 IBM Informix JDBC Driver Programmer’s Guide

getMetaData() method 3-11

getMinorVersion() method 3-24

getMonths() method 4-14

getNanoSeconds() method 4-16

getNextException() method 3-21

getObject() method 4-16, 4-20, 4-22, 4-25, 4-28

getParameterAlignment method 3-15

getParameterExtendedId method 3-15

getParameterExtendedName method 3-15

getParameterExtendedOwnerName method 3-15

getParameterLength method 3-15

getParameterMetaData() method xvii, 3-14

getParameterSourceType method 3-15

getPassword() method B-2

getPortNumber() method B-2

getProcedureColumns() method 3-17

getProp() method B-1

getQualifier() method 4-12

getRef() method 3-16

getResultSet() method F-5, F-7

getScale() method 4-12

getSchemaName() method 3-18

getSchemas() method 3-22

getSeconds() method 4-16

getSerial() method 4-9

getSerial8() method 4-9

getServerName() method B-2

getSQLName() method 5-24

getSQLState() method 3-20

getSQLStatementOffset() method 3-20

getSQLTypeName() method 4-22, 4-25, 4-26, 4-28, 4-30,

4-32, 5-5

getStartCode() method 4-11

getString() method 4-41, 6-5, 6-8, 6-14, 6-15

getTableName() method 3-18

getText() method 6-13

getTimestamp() method 6-9

getTypeMap() method 4-20, 4-24, 4-25

getUDR() method 5-25

getUDRSQLname() method 5-25

getUnicodeStream() method 3-16

getUpdateCount() method F-5, F-7

getUpdateCounts() method 3-6

getUser() method B-2

getWarnings() method 3-11

getXXX() method 3-3, 3-7, C-14, C-15, F-12

GL_DATE environment variable 6-3, 6-4, 6-10

GLDATESelect.java example program A-3

Global Language Support (GLS) xiv, 6-1

Graphical mode 1-8, 1-13

greaterThan() method 4-13, 4-15

group option, of sqlhosts file 2-20

H
HashSet class 4-16, 4-17

hasOutParameter() method 3-11

Help xxviii

Hexadecimal format, converting between 4-46

Hexadecimal string format 4-46

High-Availability Data Replication
checking read-only status 2-24

demo for 2-24

environment variables for 2-24

example programs A-10

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 7-7

retrying connections 2-25

specifying secondary servers 2-24

using 2-23

with connection pooling 7-8

Hold cursors 3-5

Host names, setting
in database URLs 2-8

in DataSource objects 2-4

HTTP proxy 2-27, 2-28

I
IBM Informix JDBC Driver

connection pools, using with 7-5

IBM xml4j parser 3-26

IFMX_CPM_AGELIMIT environment variable 7-7

IFMX_CPM_ENABLE_SWITCH_HDRPOOL

environment variable 7-7

IFMX_CPM_INIT_POOLSIZE environment

variable 7-6

IFMX_CPM_MAX_CONNECTIONS environment

variable 7-6

IFMX_CPM_MAX_POOLSIZE environment

variable 7-7

IFMX_CPM_MIN_AGELIMIT environment

variable 7-7

IFMX_CPM_MIN_POOLSIZE environment

variable 7-6

IFMX_CPM_SERVICE_INTERVAL environment

variable 7-7

IfmxCallableStatement interface 3-13

IfmxStatement class 3-23

IfmxUdtSQLInput interface 5-2, 5-3

IfmxUdtSQLOutput interface 5-2, 5-4

IFX_AUTOFREE environment variable 2-14, 7-4, A-2

IFX_BATCHUPDATE_PER_SPEC environment

variable 2-14, 3-6

IFX_CODESETLOB 6-15

IFX_CODESETLOB environment variable 2-14, 6-14,

6-15

IFX_DIRECTIVES environment variable 2-15

IFX_EXTDIRECTIVES environment variable 2-15

IFX_GET_SMFLOAT_AS_FLOAT environment

variable 2-15

Index X-7

IFX_ISOLATION_LEVEL 2-15, 2-20

IFX_ISOLATION_LEVEL connection property xviii

IFX_LOCK_MODE_WAIT 2-16, 2-20

IFX_LOCK_MODE_WAIT connection property xviii

IFX_PADVARCHAR environment variable 2-16

IFX_SET_FLOAT_AS_SMFLOAT environment

variable 2-16

IFX_USEPUT environment variable 2-16, 3-7

IFX_XASPEC environment variable 2-16

IFX_XASTDCOMPLIANCE_XAEND() method B-4

IFX_XASTDCOMPLIANCE_XAEND(int value)

method B-4

IfxBblob class 4-42

IfxBblob() constructor 4-42

IfxCblob class 4-42

IfxCblob interface 4-42

IfxCblob::setAsciiStream(long) method 6-15

IfxCblob() constructor 4-42

IfxConnectionEventListener class 1-3

IfxConnectionPoolDataSource class 1-3, B-1

IfxCoreDataSource class 1-3

IfxDataSource class 1-3, B-1

IfxDriver class 2-3

IFXHOST environment variable 2-4, 2-8, 2-17

IFXHOST_SECONDARY environment variable 2-17,

2-24

ifxjdbc.jar 1-7

ifxjdbc.jar file 1-6, 1-12

IfxJDBCProxy class 2-28

IfxJDBCProxy.class file 1-6, 2-28

ifxjdbcx.jar 1-7

ifxjdbcx.jar file 1-6

ifxlang.jar file 1-6, 6-18

IfxLobDescriptor class 4-37

IfxLobDescriptor() constructor 4-37

IfxLocator class 4-47

IfxLocator object 4-37

converting to hex format 4-46

converting to hexadecimal 4-46

IfxLocator() constructor 4-37

IfxLocator() method 4-47

IfxLoClose() method 4-46

IfxLoCreate() method 4-38

IfxLoOpen() method 4-38, 4-42, 4-64

IfxLoRead() method 4-42, 4-44, 4-64

IfxLoRelease() method 4-46

IfxLoSeek() method 4-43

IfxLoSize() method 4-46

IfxLoTell() method 4-43

IfxLoTruncate() method 4-45

IfxLoWrite() method 4-42, 4-45

IfxPooledConnection class 1-3

IfxRegisterOutParameter() method 3-13, F-12, F-13

IfxSetNull() method 3-14, F-12

IfxSetObject() method 6-9, C-6

ifxsqlj.jar file 1-6

ifxtools.jar file 1-5, 1-6, 3-25, 4-30

IfxTypes class C-6, C-10

IfxXADataSource class 1-3

Industry standards, compliance with xxxi

Informix base distinguished name 2-23

Informix Dynamic Server documentation set xxviii

Informix extensions
to Clob interface 6-15

INFORMIX-SE 5.x database servers 2-19

INFORMIXCONRETRY environment variable 2-17

INFORMIXCONTIME environment variable 2-17

INFORMIXOPCACHE environment variable 2-17

INFORMIXSERVER environment variable 2-4, 2-9,

2-10, 2-17

INFORMIXSERVER_SECONDARY environment

variable 2-17, 2-24

INFORMIXSTACKSIZE environment variable 2-17

initialPoolSize 7-8

INOUT parameters 3-8

InputStream interface 4-6

InputStreamReader() method 6-13, 6-14, 6-15

InputStreamtoDOM() method 3-29

Inserting DATE values 6-5, 6-7

Inserting smart large objects 4-40

Inserting XML data 3-27

insertRow() method F-12

Inserts, bulk 3-7

insertsAreDetected() method 3-17

install.txt file 1-7

Installation Guides xxv

Installing
console mode 1-9

graphical mode 1-8

silent mode 1-9

Interfaces
BatchUpdateException 3-6

Blob xv

CallableStatement 3-2, 3-7, F-13

Clob xv

Collection 4-16

Connection 3-3, 3-18

ConnectionEventListener 1-3

ConnectionPoolDataSource 1-3

DatabaseMetaData 3-21, 3-24

DataSource 2-3

Informix classes supporting 1-3

standard properties B-2

Driver 3-24

DriverManager 1-2, 2-3, 2-6, 2-12

File 4-7

FileInputStream 4-7

IfmxCallableStatement 3-13

IfmxUdtSQLInput 5-3

IfmxUdtSQLOutput 5-4

X-8 IBM Informix JDBC Driver Programmer’s Guide

Interfaces (continued)
IfxCblob 4-42

InputStream 4-6

java.sql.Blob 4-42

java.sql.PreparedStatement 6-15

List 4-17

PooledConnection 1-3

PreparedStatement 3-2, 3-3, 3-6, C-5, C-14

ResultSet 3-2, 3-3, 7-4, C-14, C-16

ResultSetMetaData 3-2

Set 4-17

SQLData 4-20, 4-25, 4-30, 5-5, 5-6

SQLInput 4-24

Statement 2-11, 3-2, 3-6, 7-4

Struct 4-20, 4-25

Types 4-9, C-1

XAConnection 3-19

XADataSource 1-3

Internationalization 6-1, 6-18

Interval class 4-10

INTERVAL data type
binary qualifiers for 4-10

extensions for 4-10

in named and unnamed rows 4-21

Intervaldemo.java example program 4-16, A-4

IntervalDF class 4-14

IntervalDF() constructor 4-14

IntervalYM class 4-12

IntervalYM() constructor 4-12

IP address, setting
in database URLs 2-8

in DataSource objects 2-4

IPv6 aware 2-10

isDefinitelyWriteable() method 3-18

isHDREnabled() method 2-25

isIfxDBANSIWARN() method B-3

isIfxDELIMIDENT() method B-3

isIfxENABLE_CACHE_TYPE() method B-3

isIfxIFX_AUTOFREE() method B-4

isIfxIFX_USEPUT() method B-4

isIfxUSEV5SERVER() method B-6

ISO 8859-1 code set xv

isReadOnly() method 2-25, 3-18

isWriteable() method 3-18

J
JAR file, location on server 5-19

JAR files
for JNDI 2-20

for LDAP SPI 2-20

ifxjdbc.jar 1-6, 1-12

ifxjdbcx.jar 1-6

ifxlang.jar 1-6, 6-18

ifxsqlj.jar 1-6

ifxtools.jar 1-6, 4-30

jar utility 1-12

Java naming and directory interface (JNDI)
and the sqlhosts file 2-20

JAR files for 2-20

Java virtual machine (JVM) 1-10

java.io file 6-2

Java.Socket class 2-23

java.sql.Blob interface 4-42

java.sql.Clob interface 6-15

methods 6-15

java.sql.ParameterMetaData class 3-14

java.sql.PreparedStatement 6-15

methods from 6-15

java.sql.PreparedStatement interface 6-15

java.text file 6-2

java.util file 6-2

Javadoc pages, for Informix extensions xiii

JavaSoft 1-1, 1-12

JDBC 3.0
methods 4-33

JDBC 3.0 specification
java.sql.Blob interface 4-36

java.sql.Clob interface 4-36

JDBC 3.0 Specification compliance 3-21

JDBC API 1-1

JDBC driver, general 1-2

jdbcdoc.htm file 1-7

jdbcrel.htm file 1-7

JDBCTEMP environment variable 2-17

K
keepJavaFile() method 5-16

Keywords
in syntax diagrams xxiii

L
largebinUDT.java example program A-6

last() method F-6

LDAP server 2-5

and HTTP proxy 2-31

updating with sqlhosts data 2-22

length() method 5-4

lessThan() method 4-13, 4-15

Lightweight directory access protocol (LDAP) server
administration requirements for 2-22

and the sqlhosts file 2-20

and unsigned applets 1-12

JAR files for 2-20

loader for 1-6

URL syntax for 2-21

utilities for 2-22

version requirement 2-20

Limitations, driver 3-11

Limitations, server 3-8

List interface 4-17

Index X-9

list1.java example program A-6

list2.java example program A-6

LO handle
in BLOB column 4-41

in CLOB column 4-41

Loading IBM Informix JDBC Driver 2-3

LOBCACHE environment variable 2-18, 4-5, 4-62, 7-3

Locale class 6-2

Locales
assumptions about xiv

client, specifying 6-3

database, specifying 6-3

synchronizing with code sets 6-2

table of 6-13

user-defined 6-16

LOCALESelect.java example program A-4

Localization 6-1

Locator object 4-37

Lock
row 4-60

locmsg.java example program 6-18, A-4

Logging install events 1-10

LVARCHAR data type C-3, C-14

M
Machine notes xxvi

manualUDT.java example program A-6

map.get() method 4-24

map.put() method 4-24, 4-25

Mapping
for CallableStatement parameters 3-12

opaque data types 5-5

maxIdleTime 7-8

maxPoolSize 7-8

maxStatements 7-8

Message class 3-21

Metadata, accessing database 3-21

Methods
absolute() 3-5, F-4, F-6

activateHDRPool_Primary() 7-9

activateHDRPool_Secondary() 7-9

addBatch() 3-16

addProp() B-1

afterLast() F-6

beforeFirst() F-4, F-6

cancel() 3-17

Clob::setAsciiStream(long position, InputStream fin,

int length) 6-15

close() 2-14, 2-18, 3-3, 7-4

commit() 3-19

connect() F-3

createJar() 5-18

createUDRs() 5-22

createUDT() 5-18

createUDTClass() 5-18

Methods (continued)
current() F-6

deleteRow() F-12

deleteRow(), and scroll cursors 3-5

deletesAreDetected() 3-17

dispValue() 4-8

equals() 4-13, 4-15

execute() 3-3, 3-17, 3-18, F-5

executeBatch() F-5

executeQuery() 3-3, 3-11, 3-12, 3-23

executeUpdate() 2-11, 4-7, F-5

executeXXX() F-3

first() F-4, F-6

forName() 2-3

fromHexString() 4-47

fromString() 4-13, 4-15

getAlignment() 5-15

getArray() 4-16, 4-20, F-8

getAsciiStream() 4-7, 4-8, 4-41

getAttributes() 4-28, F-8

getAutoAlignment() 5-4

getAutoFree() 3-23, 7-4

getBinaryStream() 4-7, 4-8, 4-41

getBlob() 4-41, 4-64, F-12

getBytes() 4-41, 6-14, 6-15

getCatalogName() 3-18

getCatalogs() 3-23

getClassName() 5-24

getClob() 4-41, 4-64, F-12

getConnection() 2-6, 2-10, 2-12, F-3

getCurrentPosition() 5-4

getDatabaseName() B-2

getDataSourceName() B-3

getDate() 6-9

getDescription() B-2

getDriverMajorVersion() 3-24

getDriverMinorVersion() 3-24

getDsProperties() B-1

getEndCode() 4-11

getErrorCode() 3-19

getFetchSize() 3-17

getFieldCount() 5-24

getFieldLength() 5-24

getFieldName() 4-12, 5-24

getFieldType() 5-24

getFieldTypeName() 5-24

getHDRtype() 2-25

getIfxCLIENT_LOCALE() B-3

getIfxCPMInitPoolSize() B-7

getIfxCPMMaxAgeLimit() B-7

getIfxCPMMaxConnections() B-7

getIfxCPMMaxPoolSize() B-7

getIfxCPMMinAgeLimit() B-7

getIfxCPMMinPoolSize() B-7

getIfxCPMServiceInterval() B-7

X-10 IBM Informix JDBC Driver Programmer’s Guide

Methods (continued)
getIfxCPMSwitchHDRPool() B-7

getIfxCSM() B-3

getIfxDB_LOCALE() B-3

getIfxDBCENTURY() B-3

getIfxDBDATE() B-3

getIfxDBSPACETEMP() B-3

getIfxDBTEMP() B-3

getIfxDBUPSPACE() B-3

getIfxFET_BUF_SIZE() B-3

getIfxGL_DATE() B-3

getIfxIFX_CODESETLOB() B-4

getIfxIFX_DIRECTIVES() B-4

getIfxIFX_EXTDIRECTIVES() B-4

getIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT() B-4

getIfxIFX_ISOLATION_LEVEL() B-4

getIfxIFX_SET_FLOAT_AS_SMFLOAT() B-4

getIfxIFX_XASPEC() B-4

getIfxIFXHOST_SECONDARY() B-4

getIfxIFXHOST() B-4

getIfxINFORMIXCONRETRY() B-4

getIfxINFORMIXCONTIME() B-4

getIfxINFORMIXOPCACHE() B-4

getIfxINFORMIXSERVER_SECONDARY() B-4

getIfxINFORMIXSTACKSIZE() B-4

getIfxJDBCTEMP() B-4

getIfxLDAP_IFXBASE() B-5

getIfxLDAP_PASSWD() B-5

getIfxLDAP_URL() B-5

getIfxLDAP_USER() B-5

getIfxLOBCACHE() B-5

getIfxNEWCODESET() B-5

getIfxNEWLOCALE() B-5

getIfxNEWNLSMAP() B-5

getIfxNODEFDAC() B-5

getIfxOPT_GOAL() B-5

getIfxOPTCOMPIND() B-5

getIfxOPTOFC() B-5

getIfxPATH() B-5

getIfxPDQPRIORITY() B-5

getIfxPLCONFIG() B-5

getIfxPLOAD_LO_PATH() B-5

getIfxPORTNO_SECONDARY() B-5

getIfxPROTOCOLTRACE() B-5

getIfxPROTOCOLTRACEFILE() B-5

getIfxPROXY() B-6

getIfxPSORT_DBTEMP() B-6

getIfxPSORT_NPROCS() B-6

getIfxSECURITY() B-6

getIfxSQLH_FILE() B-6

getIfxSQLH_TYPE() B-6

getIfxSTMT_CACHE() B-6

getIfxTRACE() B-6

getIfxTRACEFILE() B-6

getIfxTypeName() 4-12

Methods (continued)
getInputSource() 3-28

getJarFileSQLName() 5-24

getJDBCVersion() 3-24

getLength() 4-11, 5-15

getLocator() 4-42, 4-64

getMajorVersion() 3-24

getMessage() 3-19

getMetaData() 3-11

getMinorVersion() 3-24

getMonths() 4-14

getNanoSeconds() 4-16

getNextException() 3-21

getObject() 4-16, 4-20, 4-22, 4-25, 4-28

getPassword() B-2

getPortNumber() B-2

getProcedureColumns() 3-17

getProp() B-1

getQualifier() 4-12

getRef() 3-16

getResultSet() F-5, F-7

getScale() 4-12

getSchemaName() 3-18

getSchemas() 3-22

getSeconds() 4-16

getSerial() 4-9

getSerial8() 4-9

getServerName() B-2

getSQLName() 5-24

getSQLState() 3-20

getSQLStatementOffset() 3-20

getSQLTypeName() 4-22, 4-25, 4-26, 4-28, 4-30,

4-32, 5-5

getStartCode() 4-11

getString() 4-41, 6-5, 6-8, 6-14, 6-15

getTableName() 3-18

getText() 6-13

getTimestamp() 6-9

getTypeMap() 4-20, 4-24, 4-25

getUDR() 5-22

getUDRSQLname() 5-22

getUnicodeStream() 3-16

getUpdateCount() F-5, F-7

getUpdateCounts() 3-6

getUser() B-2

getWarnings() 3-11

getXXX() 3-3, 3-7, C-14, C-15, F-12

greaterThan() 4-13, 4-15

hasOutParameter() 3-11

IFX_XASTDCOMPLIANCE_XAEND() B-4

IFX_XASTDCOMPLIANCE_XAEND(int value) B-4

IfxCblob::setAsciiStream(long) 6-15

IfxLocator() 4-47

IfxLoClose() 4-46

IfxLoCreate() 4-38

Index X-11

Methods (continued)
IfxLoOpen() 4-38, 4-42, 4-64

IfxLoRead() 4-42, 4-44, 4-64

IfxLoRelease() 4-46

IfxLoSeek() 4-43

IfxLoSize() 4-46

IfxLoTell() 4-43

IfxLoTruncate() 4-45

IfxLoWrite() 4-42, 4-45

IfxRegisterOutParameter() 3-13, F-12, F-13

IfxSetNull() 3-14, F-12

IfxSetObject() 6-9, C-6

InputStreamReader() 6-13, 6-14, 6-15

InputStreamtoDOM() 3-29

insertRow() F-12

insertsAreDetected() 3-17

isDefinitelyWriteable() 3-18

isHDREnabled() 2-25

isIfxDBANSIWARN() B-3

isIfxDELIMIDENT() B-3

isIfxENABLE_CACHE_TYPE() B-3

isIfxIFX_AUTOFREE() B-4

isIfxIFX_USEPUT() B-4

isIfxUSEV5SERVER() B-6

isReadOnly() 2-25, 3-18

isWriteable() 3-18

keepJavaFile() 5-16

last() F-6

length() 5-4

lessThan() 4-13, 4-15

map.get() 4-24

map.put() 4-24, 4-25

moveToCurrentRow() F-12

moveToInsertRow() F-12

next() 2-18, 3-3, 4-8, 7-4

othersDeletesAreVisible() 3-17

othersInsertsAreVisible() 3-17

othersUpdatesAreVisible() 3-17

OutputStreamWriter() 6-13, 6-14, 6-15

ownDeletesAreVisible() 3-17

ownInsertsAreVisible() 3-17

ownUpdatesAreVisible() 3-17

prepareStatement() 3-3

previous() F-6

put() 2-12, 7-4

read() 4-8

readArray() 4-5

readAsciiStream() 5-6

readBinaryStream() 5-6

readByte() 4-21

readBytes() 5-3, 5-6

readCharacterStream() 4-5, 4-21, 5-6

readObject() 4-21, 5-6

readProperties() B-2

readRef() 4-5, 4-21, 5-6

Methods (continued)
readSQL() 4-22, 4-24, 4-30, 5-5

readString() 5-3, 5-6

refreshRow() 3-16

registerDriver() 2-3

registerOutParameter() 3-7, F-12

relative() F-6

removeJar() 5-23

removeProperty() B-1

removeUDR() 5-23

rowDeleted() 3-16

rowInserted() 3-16

rowUpdated() 3-16

scrubConnection() 7-9

set() 4-13, 4-15

setAlignment() 5-15

setArray() 4-16, C-8

setAsciiStream() 4-6, 4-7, C-5, C-8

setAutoAlignment() 5-4

setAutoCommit() 3-18

setAutoFree() 3-23, 7-4

setBigDecimal() 4-4, 4-5, C-8

setBinaryStream() 4-6, 4-7, C-5, C-8

setBlob() C-8

setBoolean() C-9

setByte() C-9

setBytes() C-9

setCatalog() 3-16

setCharacterStream() C-9

setClassName() 5-16

setClob() C-9

setCurrentPosition() 5-4

setDatabaseName() B-2

setDataSourceName() B-3

setDate() C-9

setDescription() B-2

setDouble() C-9

setExplicitCast() 5-19

setFetchDirection() F-5, F-6

setFetchSize() 3-17, F-6

setFieldCount() 5-14

setFieldLength() 5-14

setFieldType() 5-14

setFieldTypeName() 5-14

setFloat() C-9

setIfxCLIENT_LOCALE() B-3

setIfxCPMInitPoolSize() B-7

setIfxCPMMaxAgeLimit() B-7

setIfxCPMMaxConnections() B-7

setIfxCPMMaxPoolSize() B-7

setIfxCPMMinAgeLimit() B-7

setIfxCPMMinPoolSize() B-7

setIfxCPMServiceInterval() B-7

setIfxCPMSwitchHDRPool() B-7

setIfxCSM (String csm) B-3

X-12 IBM Informix JDBC Driver Programmer’s Guide

Methods (continued)
setIfxDB_LOCALE() B-3

setIfxDBANSIWARN() B-3

setIfxDBCENTURY() B-3

setIfxDBDATE() B-3

setIfxDBSPACETEMP() B-3

setIfxDBTEMP() B-3

setIfxDBUPSPACE() B-3

setIfxDELIMIDENT() B-3

setIfxENABLE__HDRSWITCH() B-3

setIfxENABLE_CACHE_TYPE() B-3

setIfxFET_BUF_SIZE() B-3

setIfxGL_DATE() B-3

setIfxIFX_AUTOFREE() B-4

setIfxIFX_CODESETLOB() B-4

setIfxIFX_DIRECTIVES() B-4

setIfxIFX_EXTDIRECTIVES() B-4

setIfxIFX_ISOLATION_LEVEL B-4

setIfxIFX_LOCK_MODE_WAIT B-4

setIfxIFX_USEPUT() B-4

setIfxIFXHOST() B-4

setIfxINFORMIXCONRETRY() B-4

setIfxINFORMIXCONTIME() B-4

setIfxINFORMIXOPCACHE() B-4

setIfxINFORMIXSERVER_SECONDARY() B-4

setIfxINFORMIXSTACKSIZE() B-4

setIfxJDBCTEMP() B-4

setIfxLDAP_IFXBASE() B-5

setIfxLDAP_PASSWD() B-5

setIfxLDAP_URL() B-5

setIfxLDAP_USER() B-5

setIfxLOBCACHE() B-5

setIfxNEWCODESET() B-5

setIfxNEWLOCALE() B-5

setIfxNODEFDAC(String value) B-5

setIfxOPT_GOAL() B-5

setIfxOPTCOMPIND() B-5

setIfxOPTOFC() B-5

setIfxPATH() B-5

setIfxPDQPRIORITY() B-5

setIfxPLCONFIG() B-5

setIfxPLOAD_LO_PATH() B-5

setIfxPROTOCOLTRACE() B-5

setIfxPROTOCOLTRACEFILE() B-5

setIfxPROXY() B-6

setIfxPSORT_DBTEMP() B-6

setIfxPSORT_NPROCS() B-6

setIfxSECURITY() B-6

setIfxSQLH_FILE() B-6

setIfxSQLH_TYPE() B-6

setIfxSTMT_CACHE() B-6

setIfxTRACE() B-6

setIfxTRACEFILE() B-6

setIfxUSEV5SERVER() B-6

setImplicitCast() 5-19

Methods (continued)
setInt() 3-3, C-9

setJarFileSQLName() 5-16, 5-21

setJarTmpPath() 5-19

setLength() 5-15

setLong() C-9

setMaxFieldSize() 3-17

setMaxRows() F-6

setNull() 3-12, C-9

setObject() 4-4, 4-5, 4-16, 4-25, 6-9

setPassword() B-2

setPortNumber() B-2

setQualifier() 4-14, 4-16

setQueryTimeout() 3-17

setReadOnly() 3-16

setRef() 3-16

setServerName() B-2

setShort() C-10

setSQLName() 5-16, 5-17, F-15

setString() 5-28, 6-9, C-10

setTime() C-10

setTimestamp() C-10

setTypeMap() 4-16, 4-22

setUDR() 5-22

setUDTExtName() 5-7

setUnicodeStream() 3-16

setUser() B-2

setXXX() 3-11, 5-28, C-5, C-12, C-13

skipBytes() 5-4

SQLInput() 4-21, 5-2

SQLOutput() 4-21, 5-2

StringtoDOM() 3-28

toBytes() 4-47

toHexString() 4-47

toString() 4-14, 4-16

unsupported
for distinct data types 4-5

for named rows 4-21

for opaque data types 5-6

for querying the database 3-16

updateObject() 6-9

updateRow() F-12

updateRow(), and scroll cursors 3-5

updatesAreDetected() 3-17

updateString() 6-9

writeArray() 4-5

writeAsciiStream() 5-6

writeBinaryStream() 5-6

writeByte() 4-21

writeBytes() 5-4, 5-6

writeCharacterStream() 4-5, 4-21, 5-6

writeInt() 4-25

writeObject() 4-21, 4-25, 5-6, F-7

writeProperties() B-2

writeRef() 4-5, 4-21, 5-6

Index X-13

Methods (continued)
writeSQL() 4-22, 4-25, 4-30, 5-5

writeString() 5-4, 5-6

writeXXX() 4-25

XMLtoInputStream 3-28

XMLtoString() 3-27

Methods, DatabaseMetaData 3-21

minPoolSize 7-8

mitypes.h file 5-5

moveToCurrentRow() method F-12

moveToInsertRow() method F-12

Multiple OUT parameters 3-9

MultiRowCall.java example program A-4

myMoney.java example program A-6

N
Name-value pairs of database URL 2-9

Named row data types
examples of

creating a Struct class for 4-28

using the SQLData interface 4-22

using the Struct interface 4-26

extensions for 4-20

generating using the ClassGenerator utility 4-30

intervals and collections in 4-21

opaque data type columns in 4-21

unsupported methods for 4-21

using the SQLData interface for 4-22

using the Struct interface for 4-25

Named row example programs A-7

Native SQL date formats 6-5, 6-7

NEWCODESET environment variable 6-3, 6-17

NEWLOCALE environment variable 6-3, 6-17

NEWNLSMAP environment variable 2-18

next() method 2-18, 3-3, 4-8, 7-4

NODEFDAC environment variable 2-18

Nonnative SQL date formats 6-5, 6-7

O
Objects

IfxLocator 4-37

Locator 4-37

ODBC 1-2

Online help xxviii

Online manuals xxviii

Online notes xxv, xxvi

onspaces utility 4-49

Opaque data types
caching type information 4-32, 5-5

creating 5-6

definition of 5-2

examples of
defining a class for 5-26

large objects 5-29

retrieving data 5-28

Opaque data types (continued)
examples of creating 5-31

mappings for 5-5

steps for creating 5-8

unsupported methods 5-6

Opaque type
SQL name 5-16

Opaque types
and transactions 5-25

creating 5-7

OPT_GOAL environment variable 2-18

OPTCOMPIND environment variable 2-18

OptimizedSelect.java example program A-4

OPTOFC environment variable 2-18, 7-4, A-4

optofc.java example program 2-12, 7-4, A-4

othersDeletesAreVisible() method 3-17

othersInsertsAreVisible() method 3-17

othersUpdatesAreVisible() method 3-17

OUT parameter example programs 3-8

OUT parameters 3-8

OutputStreamWriter() method 6-13, 6-14, 6-15

Overloaded UDRs, removing 5-23

Overview of IBM Informix JDBC Driver 1-3

ownDeletesAreVisible() method 3-17

ownInsertsAreVisible() method 3-17

ownUpdatesAreVisible() method 3-17

P
ParameterMetaData class xvii, 3-14

PASSWORD connection property 2-5, 2-9

Passwords
setting in DataSource object 2-5

URL syntax of 2-9

PATH environment variable 2-18

PDQPRIORITY environment variable 2-18

Performance 7-2

PLCONFIG environment variable 2-19

PLOAD_LO_PATH environment variable 2-19

PooledConnection interface 1-3

Port numbers, setting
in database URLs 2-8

in DataSource objects 2-4

in sqlhosts file or LDAP server 2-21

PORTNO environment variable 2-4, 2-8

PORTNO_SECONDARY environment variable 2-19,

2-24

Precedence rules for date formats 6-10

PREPARE statements, executing multiple 3-6

PreparedStatement interface 3-2, 3-3, 3-6, C-5, C-14

prepareStatement() method 3-3

previous() method F-6

Printed manuals xxviii

Product CD, contents 1-7

Properties class 2-12

Property lists 2-12

X-14 IBM Informix JDBC Driver Programmer’s Guide

PropertyConnection.java example program A-4

propertyCycle 7-8

PROXY environment variable 2-19

Proxy server 2-27, 2-28

example programs A-8

PSORT_DBTEMP environment variable 2-19

PSORT_NPROCS environment variable 2-19

put() method 2-12, 7-4

Q
Qualifiers, binary, for INTERVAL data types 4-10

Querying the database 3-2

R
Read-only connections 3-18

read() method 4-8

readArray() method 4-5

readAsciiStream() method 5-6

readBinaryStream() method 5-6

readByte() method 4-21

readBytes() method 5-3, 5-6

readCharacterStream() method 4-5, 4-21, 5-6

readObject() method 4-21, 5-6

readProperties() method B-2

readRef() method 4-5, 4-21, 5-6

readSQL() method 4-22, 4-24, 4-30, 5-5

readString() method 5-3, 5-6

Ref type C-1

refreshRow() method 3-16

registerDriver() method 2-3

Registering IBM Informix JDBC Driver 2-3

registerOutParameter() method 3-7, F-12

type mappings for 3-12

Relative distinguished name (RDN) 2-23

relative() method F-6

Release Notes xxvi

Remote database access 2-27

Remote method invocation (RMI) 2-32

removeJar() method 5-21, 5-23

removeProperty() method B-1

removeUDR() method 5-23

removeUDT() method 5-21

Restrictions, driver 3-11

Restrictions, server 3-8

ResultSet class 6-5, 6-8

ResultSet interface 3-2, 3-3, 7-4, C-14, C-16

ResultSetMetaData interface 3-2

Retrieving
database names 3-23

date values 6-5, 6-8

Informix error message text 3-21

syntax error offset 3-20

user names 3-22

version information 3-24

XML data 3-28

RMI 2-32

ROLLBACK WORK statement 4-61

row3.java example program A-7

rowDeleted() method 3-16

rowInserted() method 3-16

rowUpdated() method 3-16

RSMetaData.java example program A-4

S
Sample-code conventions xxiv

SAX (Simple API for XML) 3-25

Sbspace
metadata area 4-55

name of 4-52, 4-53

user-data area 4-55

SBSPACENAME configuration parameter 4-50, 4-53

Schemas, IBM Informix JDBC Driver

interpretation 3-22

Screen reader
reading syntax diagrams D-1

Scroll cursors 3-4

ScrollCursor.java example program 3-5, A-4

scrubConnection() method 2-38, 7-9

Search, anonymous, of sqlhosts information 2-21

SECURITY environment variable 2-19

Selecting smart large objects 4-41

SERIAL columns and scroll cursors 3-5

SERIAL data type 4-9

Serial.java example program A-4

SERIAL8 data type 4-9

Server restrictions, limitations 3-8

Service provider interface (SPI) 2-20

Servlets 2-27

SessionMgr class 2-28

SessionMgr.class file 1-6, 2-28

Set interface 4-17

set() method 4-13, 4-15

setAlignment() method 5-15

setArray() method 4-16, C-8

setAsciiStream() method 4-6, 4-7, C-5, C-8

setAutoAlignment() method 5-4

setAutoCommit() method 3-18

setAutoFree() method 3-23, 7-4

setBigDecimal() method 4-4, 4-5, C-8

setBinaryStream() method 4-6, 4-7, C-5, C-8

setBlob() method C-8

setBoolean() method C-9

setByte() method C-9

setBytes() method C-9

setCatalog() method 3-16

setCharacterStream() method C-9

setClassName() method 5-16

setClob() method C-9

setCurrentPosition() method 5-4

setDatabaseName() method B-2

Index X-15

setDataSourceName() method B-3

setDate() method C-9

setDescription() method B-2

setDouble() method C-9

setExplicitCast() method 5-19

setFetchDirection() method F-5, F-6

setFetchSize() method 3-17, F-6

setFieldCount() method 5-14

setFieldLength() method 5-14

setFieldName method 5-14

setFieldType() method 5-14

setFieldTypeName() method 5-14

setFloat() method C-9

setIfxCLIENT_LOCALE() method B-3

setIfxCPMInitPoolSize() method B-7

setIfxCPMMaxAgeLimit() method B-7

setIfxCPMMaxConnections() method B-7

setIfxCPMMaxPoolSize() method B-7

setIfxCPMMinAgeLimit() method B-7

setIfxCPMMinPoolSize() method B-7

setIfxCPMServiceInterval() method B-7

setIfxCPMSwitchHDRPool() method B-7

setIfxCSM (String csm) method B-3

setIfxDB_LOCALE() method B-3

setIfxDBANSIWARN() method B-3

setIfxDBCENTURY() method B-3

setIfxDBDATE() method B-3

setIfxDBSPACETEMP() method B-3

setIfxDBTEMP() method B-3

setIfxDBUPSPACE() method B-3

setIfxDELIMIDENT() method B-3

setIfxENABLE__HDRSWITCH() method B-3

setIfxENABLE_CACHE_TYPE() method B-3

setIfxFET_BUF_SIZE() method B-3

setIfxGL_DATE() method B-3

setIfxIFX_AUTOFREE() method B-4

setIfxIFX_CODESETLOB() method B-4

setIfxIFX_DIRECTIVES() method B-4

setIfxIFX_EXTDIRECTIVES() method B-4

setIfxIFX_ISOLATION_LEVEL method B-4

setIfxIFX_LOCK_MODE_WAIT method B-4

setIfxIFX_USEPUT() method B-4

setIfxIFXHOST() method B-4

setIfxINFORMIXCONRETRY() method B-4

setIfxINFORMIXCONTIME() method B-4

setIfxINFORMIXOPCACHE() method B-4

setIfxINFORMIXSERVER_SECONDARY() method B-4

setIfxINFORMIXSTACKSIZE() method B-4

setIfxJDBCTEMP() method B-4

setIfxLDAP_IFXBASE() method B-5

setIfxLDAP_PASSWD() method B-5

setIfxLDAP_URL() method B-5

setIfxLDAP_USER() method B-5

setIfxLOBCACHE() method B-5

setIfxNEWCODESET() method B-5

setIfxNEWLOCALE() method B-5

setIfxNODEFDAC(String value) method B-5

setIfxOPT_GOAL() method B-5

setIfxOPTCOMPIND() method B-5

setIfxOPTOFC() method B-5

setIfxPATH() method B-5

setIfxPDQPRIORITY() method B-5

setIfxPLCONFIG() method B-5

setIfxPLOAD_LO_PATH() method B-5

setIfxPROTOCOLTRACE() method B-5

setIfxPROTOCOLTRACEFILE() method B-5

setIfxPROXY() method B-6

setIfxPSORT_DBTEMP() method B-6

setIfxPSORT_NPROCS() method B-6

setIfxSECURITY() method B-6

setIfxSQLH_FILE() method B-6

setIfxSQLH_TYPE() method B-6

setIfxSTMT_CACHE() method B-6

setIfxTRACE() method B-6

setIfxTRACEFILE() method B-6

setIfxUSEV5SERVER() method B-6

setImplicitCast() method 5-19

setInt() method 3-3, C-9

setJarFileSQLName() method 5-13, 5-16, 5-21

setJarTmpPath() method 5-19

setLength() method 5-15

setLong() method C-9

setMaxFieldSize() method 3-17

setMaxRows() method F-6

setNull() method 3-12, C-9

setObject() method 4-4, 4-5, 4-16, 4-25, 6-9

setPassword() method B-2

setPortNumber() method B-2

setQualifier() method 4-14, 4-16

setQueryTimeout() method 3-17

setReadOnly() method xviii, 3-16

setRef() method 3-16

setServerName() method B-2

setShort() method C-10

setSQLname() method 5-13

setSQLName() method 5-16, 5-17, F-15

setString() method 5-28, 6-9, C-10

setTime() method C-10

setTimestamp() method C-10

Setting
autocommit 3-18

CLASSPATH environment variable 1-11

properties 2-12

setTypeMap() method 4-16, 4-22

setUDR() method 5-8, 5-22, 5-25, F-14

setUDTExtName() method 5-7

setUnicodeStream() method 3-16

setup.jar file 1-5, 1-7

setup.std file 4-30

setUser() method B-2

X-16 IBM Informix JDBC Driver Programmer’s Guide

setXXX() method 3-11, 5-28, C-5, C-12, C-13

Silent mode 1-8, 1-13

SimpleCall.java example program A-4

SimpleConnection.java example program A-4

SimpleSelect.java example program A-4

skipBytes() method 5-4

Smart large object
access mode 4-60

attributes 4-53

buffering mode 4-54

byte data in 4-41

character data in 4-41

closing 4-61

data integrity 4-56

estimated size 4-53

extent size 4-52, 4-53

last-access time 4-54, 4-56, 4-58, 4-59, 4-60

last-change time 4-59, 4-60

last-modification time 4-59, 4-60

locking 4-54

logging 4-58

logging of 4-54, 4-58

maximum I/O block size 4-53

metadata 4-55, 4-56, 4-59

minimum extent size 4-53

next-extent size 4-52, 4-53

sbspace 4-52, 4-53

size of 4-50, 4-52, 4-53, 4-59, 4-60

transactions with 4-54, 4-61

unlocking 4-61

user data 4-56, 4-59

Smart large object example programs A-5

Smart large object, implementation
classes

IfxBblob 4-36

IfxCblob 4-36

IfxLobDescriptor 4-36

IfxLocator 4-36

IfxLoStat 4-36

IfxSmartBlob 4-36

Smart large objects
creating 4-36

inserting 4-40

selecting 4-41

Smart large objects, accessing 4-33

Smart-large-object lock
exclusive 4-58, 4-61

lock-all 4-61

releasing 4-61

share-mode 4-61

update 4-61

update mode 4-61

Smart-large-object support in IDS 4-34

Software dependencies xiv

SQL code xxiv

SQL date formats
native 6-5, 6-7

nonnative 6-5, 6-7

SQL name 5-13, 5-16, 5-20

SQLCODE messages 3-21

SQLData interface 4-20, 4-25, 4-30, 5-5, 5-6

SQLData objects
caching type information 4-32, 5-5

SQLException class 3-19, 3-20, 3-21, C-12, C-15

SQLH_TYPE environment variable 2-19

SQLH_TYPE property 2-5

SqlhDelete utility 2-23

sqlhosts file
administration requirements for 2-22

and unsigned applets 1-12

group option 2-20

reading 2-20

URL syntax for 2-21

utilities for 2-22

SqlhUpload utility 2-22

SQLInput interface 4-24

SQLInput() method 4-21, 5-2

SQLOutput() method 4-21, 5-2

SQLSTATE value 3-19

Statement interface 2-11, 3-2, 3-6, 7-4

Statement local variables 3-7

Status information
definition of 4-59

last-access time 4-59, 4-60

last-change time 4-59, 4-60

last-modification time 4-59, 4-60

size 4-59, 4-60

STMT_CACHE environment variable 2-19

Storage characteristics
attribute information 4-53

column-level 4-53, 4-54

definition of 4-48

disk-storage information 4-52

system default 4-50, 4-53, 4-54

system-specified 4-53, 4-54

user-specified 4-53, 4-54

Strings, representing dates using 6-6

StringtoDOM() method 3-28

Struct interface 4-20, 4-25

Struct objects
caching type information 4-32, 5-5

Structured type (Struct) 4-20

Sun JDBC 3.0 properties 7-8

Support for 32K LVARCHAR xvii

Support for java.sql.ParameterMetaData interface xvii

Support for Multiple UDR OUT parameters xvii

Supported environment variables 6-2

Syntax diagrams
conventions for xx

keywords in xxiii

Index X-17

Syntax diagrams (continued)
reading in a screen reader D-1

variables in xxiii

Syntax error offset, retrieving 3-20

Syntax of database URLs 2-7

Syntax segment xxii

sysmaster database 3-22

systables catalog
and code set conversion 6-11, 6-13

and metadata 3-22

T
TEXT data type

caching 7-2

code set conversion 6-14

code set conversion for 6-14

examples for
data inserts and updates 4-6

data retrieval 4-7

extensions for 4-5

TextConv.java example program A-4

TextType.java example program 4-7, 4-8, A-4

Threads, multiple, and concurrency 3-4

TimeoutMgr class 2-28

TimeoutMgr.class file 1-6, 2-28

toBytes() method 4-47

TOC Notes xxvi

toHexString() method 4-47

toString() method 4-14, 4-16

Methods
toString() 4-47

Transaction
beginning 4-61

committing 4-61

rolling back 4-61

Transaction management
smart large objects and 4-54, 4-61

Transactions
distributed 1-3, 2-2, 2-5, 3-19

handling 3-18

Transactions, creating opaque types and UDRs 5-25

TreeSet class 4-18

TU_DAY variable 4-11, 4-15

TU_F1 variable 4-11

TU_F2 variable 4-11

TU_F3 variable 4-11

TU_F4 variable 4-11

TU_F5 variable 4-11, 4-15

TU_FRAC variable 4-11

TU_HOUR variable 4-11

TU_MINUTE variable 4-11

TU_MONTH variable 4-11

TU_SECOND variable 4-11

TU_YEAR variable 4-11

Tuple buffer 2-14, 7-2

Types interface 4-9, C-1

Typographical conventions xix

U
UDR Manager

example programs A-10

UDR.
See User-defined routines.

UDRManager class 1-5, 5-2, 5-7

UDRMetaData class 5-2, 5-7

UDT Manager
example programs A-10

udt_d1.java example program A-6

udt_d2.java example program A-6

udt_d3.java example program A-6

UDT.
See Opaque data types.

UDTManager class 1-5, 5-2

UDTMetaData class 5-2

udtudrmgr package 1-5

Unicode
and internationalization APIs 6-2

and the client code set 6-13

and the database code set 6-11

Unicode characters 6-15

Uninstalling
in console mode 1-13

in graphical mode 1-13

in silent mode 1-13

Uninstalling driver 1-13

Unnamed row data types
examples of

creating a Struct class for 4-28

using the Struct interface 4-26

extensions for 4-20

intervals and collections in 4-21

using the Struct interface for 4-26

Unsupported methods
for distinct data types 4-5

for named rows 4-21

for opaque data types 5-6

for querying the database 3-16

UpdateCursor1.java example program 3-5, A-4

UpdateCursor2.java example program 3-5, A-5

UpdateCursor3.java example program 3-5, A-5

updateObject() method 6-9

updateRow() method 3-5, F-12

Updates, batch 3-6

updatesAreDetected() method 3-17

updateString() method 6-9

URLs
database 2-6, 2-7

syntax for LDAP server and sqlhosts file 2-21

USER connection property 2-4, 2-9

X-18 IBM Informix JDBC Driver Programmer’s Guide

User names, setting
in database URLs 2-9

in DataSource object 2-4

User-defined routines
and named row parameters 4-26

and transactions 5-25

creating 5-7

definistion of 5-12

definition of 5-2

examples of creating 5-42

User-defined routines, steps for creating 5-11

USEV5SERVER environment variable 2-19

Using
in an applet 1-12

in an application 1-10

Utilities
ClassGenerator 1-6, 4-30

jar 1-12

SqlhDelete 2-23

SqlhUpload 2-22

V
Variables for binary qualifiers 4-10

Variables, in syntax diagrams xxiii

Version class 3-24

Version, of IBM Informix JDBC Driver 3-24

Visual disabilities
reading syntax diagrams D-1

W
writeArray() method 4-5

writeAsciiStream() method 5-6

writeBinaryStream() method 5-6

writeByte() method 4-21

writeBytes() method 5-4, 5-6

writeCharacterStream() method 4-5, 4-21, 5-6

writeInt() method 4-25

writeObject() method 4-21, 4-25, 5-6, F-7

writeProperties() method B-2

writeRef() method 4-5, 4-21, 5-6

writeSQL() method 4-22, 4-25, 4-30, 5-5

writeString() method 5-4, 5-6

writeXXX() method 4-25

X
XA (distributed transactions) 1-3, 2-2, 2-5, 3-19

XAConnection interface 3-19

XADataSource interface 1-3

xerces parser 3-26

xerces.jar file 3-25

XML documents
example programs A-9

examples 3-29

setting up environment for 3-25

XMLtoInputStream() method 3-28

XMLtoString() method 3-27

Index X-19

X-20 IBM Informix JDBC Driver Programmer’s Guide

����

Printed in USA

G251-2290-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
IB

M

In

fo
rm

ix

Ve
rs

io
n

3.
0

IB
M

In

fo
rm

ix

JD

BC

Dr

iv
er

Pr

og
ra

m
m

er
’s

Gu

id
e

�
�

�

	Informix Documentation Website
	Informix CSDK Documentation Website
	IDS 10.0 Documentation Website
	Contents
	Introduction
	IBM Informix Java Documentation
	About This Manual
	Organization of This Manual
	Supplementary JDBC Documentation
	Material Not Covered
	Types of Users
	Software Dependencies
	Assumptions About Your Locale

	New Features
	Features Added for IBM Informix JDBC Driver, Version 2.21.JC5
	Features New to IBM Informix JDBC Driver, Version 2.21.JC4

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	Example Code Conventions

	Additional Documentation
	Installation Guides
	Online Notes
	Locating Online Notes
	Online Notes Filenames

	Informix Error Messages
	Manuals
	Online Manuals
	Printed Manuals

	Online Help

	Accessibility
	IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Chapter 1. Getting Started
	What Is JDBC?
	What Is a JDBC Driver?
	Overview of IBM Informix JDBC Driver
	Classes Implemented in IBM Informix JDBC Driver
	Informix Classes That Implement Java Interfaces
	Informix Classes that Extend the Java Specification
	Informix Classes That Provide Support Beyond the Java Specification
	Using UDTManager and UDRManager Classes with JDK 1.4

	Files in IBM Informix JDBC Driver
	Client- and Server-Side JDBC Drivers

	Installing the Driver
	Installing in Graphical Mode
	Installing in Console Mode
	Installing in Silent Mode

	Logging Install Events
	Using the Driver in an Application
	Using the Driver in an Applet
	Uninstalling the Driver

	Chapter 2. Connecting to the Database
	Loading IBM Informix JDBC Driver
	Using a DataSource Object
	Using the DriverManager.getConnection() Method
	Format of Database URLs
	IP Address in Connection URLs

	Database Versus Database Server Connections
	Specifying Properties

	Using Informix Environment Variables
	Dynamically Reading the Informix sqlhosts File
	Connection Property Syntax
	Administration Requirements
	Utilities to Update the LDAP Server with sqlhosts Data
	SqlhUpload
	SqlhDelete

	Using High-Availability Data Replication
	Secondary Server Connection Properties
	Checking for Read-Only Status
	Retrying Connections

	Using an HTTP Proxy Server
	Configuring Your Environment to Use a Proxy Server
	Specifying a Timeout

	Using the Proxy with an LDAP Server
	Specifying Where LDAP Lookup Occurs

	Specifying sqlhosts File Lookup

	Using Other Multitier Solutions
	Encryption Options
	Using the JCE Security Package
	Using Password Encryption
	Configuring the Database Server

	Using Network Encryption
	Network Encryption Syntax
	Using Option Tags
	Using Option Parameters
	Configuring the Encryption CSM in the Server

	PAM Authentication Method
	Using PAM in JDBC

	Closing the Connection

	Chapter 3. Performing Database Operations
	Querying the Database
	Example of Sending a Query to an Informix Database
	Using Result Sets
	Deallocating Resources
	Executing Across Threads
	Using Scroll Cursors
	Scroll Sensitivity
	Client-Side Scrolling
	Result Set Updatability

	Using Hold Cursors

	Updating the Database
	Performing Batch Updates
	SQL Statements and Batch Updates
	Return Value from Statement.executeBatch() Method

	Performing Bulk Inserts

	Parameters, Escape Syntax, and Unsupported Methods
	Using CallableStatement OUT Parameters
	Server and Driver Restrictions and Limitations

	JDBC Support for DESCRIBE INPUT
	Using Escape Syntax
	Unsupported Methods and Methods that Behave Differently

	Handling Transactions
	Handling Errors
	Handling Errors With the SQLException Class
	Retrieving the Syntax Error Offset
	Catching RSAM Error Messages

	Handling Errors with the com.informix.jdbc.Message Class

	Accessing Database Metadata
	Other Informix Extensions to the JDBC API
	Using the Auto Free Feature
	Obtaining Driver Version Information

	Storing and Retrieving XML Documents
	Setting Up Your Environment to Use XML Methods
	Setting Your CLASSPATH
	Specifying a Parser Factory

	Inserting Data
	Retrieving Data
	Inserting Data Examples
	XMLtoString() Examples
	XMLtoInputStream() Example

	Retrieving Data Examples
	StringtoDOM() Example
	InputStreamtoDOM() Example
	getInputSource() Examples

	Chapter 4. Working With Informix Types
	Distinct Data Types
	Inserting Data Examples
	Retrieving Data Example
	Unsupported Methods

	BYTE and TEXT Data Types
	Caching Large Objects
	Example: Inserting or Updating Data
	Example: Selecting Data

	SERIAL and SERIAL8 Data Types
	INTERVAL Data Type
	The Interval Class
	Using Variables for Binary Qualifiers
	Using Interval Methods

	The IntervalYM Class
	Using IntervalYM Constructors
	Using IntervalYM Methods

	The IntervalDF Class
	Using IntervalDF Constructors
	Using IntervalDF Methods

	Interval Example

	Collections and Arrays
	Collection Examples
	Array Example

	Named and Unnamed Rows
	Interval and Collection Support
	Unsupported Methods
	Using the SQLData Interface
	SQLData Examples

	Using the Struct Interface
	Struct Examples

	Using the ClassGenerator Utility
	Simple Named Row Example
	Nested Named Row Example

	Caching Type Information
	Smart Large Object Data Types
	Smart Large Objects in the Database Server
	Smart Large Objects in a Client Application
	Steps for Creating Smart Large Objects
	Steps for Accessing Smart Large Objects

	Performing Operations on Smart Large Objects
	Opening a Smart Large Object
	Positioning Within a Smart Large Object
	Reading from a Smart Large Object
	Writing to a Smart Large Object
	Truncating a Smart Large Object
	Measuring a Smart Large Object
	Closing and Releasing a Smart Large Object
	Converting IfxLocator to a Hexadecimal String

	Working with Storage Characteristics
	Using System-Specified Storage Characteristics
	Working with Disk-Storage Information
	Working with Logging, Last-Access Time, and Data Integrity
	Changing the Storage Characteristics

	Working with Status Characteristics
	Working with Locks
	Using Byte-Range Locking

	Caching Large Objects
	Smart Large Object Examples
	Creating a Smart Large Object
	Inserting Data into a Smart Large Object
	Retrieving Data from a Smart Large Object

	Chapter 5. Working with Opaque Types
	Using the IfmxUDTSQLInput Interface
	Reading Data
	Positioning in the Data Stream
	Setting or Obtaining Data Attributes

	Using the IfmxUDTSQLOutput Interface
	Mapping Opaque Data Types
	Caching Type Information
	Unsupported Methods
	Creating Opaque Types and UDRs
	Overview of Creating Opaque Types and UDRs
	Preparing to Create Opaque Types and UDRs
	Steps to Creating Opaque Types
	Steps to Creating UDRs
	Requirements for the Java Class
	SQL Names
	Specifying Characteristics for an Opaque Type
	Specifying Field Count
	Specifying Additional Field Characteristics
	Specifying Length
	Specifying Alignment
	Alignment Values
	Specifying SQL Names
	Specifying the Java Class Name
	Specifying Java Source File Retention

	Creating the JAR and Class Files
	Creating the .class and .java Files
	Creating the .jar File

	Sending the Class Definition to the Database Server
	Specifying Deployment Descriptor Actions
	Specifying a JAR File Temporary Path

	Creating an Opaque Type from Existing Code
	Using setXXXCast() Methods
	Using setSupportUDR() and setUDR()

	Removing Opaque Types and JAR Files
	Creating UDRs
	Removing UDRs and JAR Files
	Removing Overloaded UDRs

	Obtaining Information About Opaque Types and UDRs
	getXXX() Methods in the UDTMetaData Class
	getXXX() Methods in the UDRMetaData Class

	Executing in a Transaction

	Examples
	Class Definition
	Inserting Data
	Retrieving Data
	Using Smart Large Objects Within an Opaque Type
	Creating an Opaque Type from an Existing Java Class with UDTManager
	Creating an Opaque Type Using Default Support Functions
	Creating an Opaque Type Using Support Functions You Supply

	Creating an Opaque Type Without an Existing Java Class
	Creating UDRs with UDRManager

	Chapter 6. Internationalization and Date Formats
	Support for JDK and Internationalization
	Support for IBM Informix GLS Variables
	Support for DATE End-User Formats
	GL_DATE Variable
	DBDATE Variable
	DBCENTURY Variable

	Precedence Rules for End-User Formats
	Support for Code-Set Conversion
	Unicode to Database Code Set
	Unicode to Client Code Set
	Connecting to a Database with Non-ASCII Characters
	Code-Set Conversion for TEXT Data Types
	Converting Using the IFX_CODESETLOB Environment Variable
	Converting Using JDK Methods

	User-Defined Locales
	Support for Localized Error Messages

	Chapter 7. Tuning and Troubleshooting
	Debugging Your JDBC API Program
	Managing Performance
	The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables
	Managing Memory for Large Objects
	Reducing Network Traffic
	Using Bulk Inserts
	Using a Connection Pool
	Deploying a ConnectionPoolDataSource Object
	Tuning the Connection Pool Manager
	Using High-Availability Data Replication with Connection Pooling
	Cleaning Pooled Connections
	Managing Connections

	Appendix A. Sample Code Files
	Appendix B. DataSource Extensions
	Appendix C. Mapping Data Types
	Appendix D. Accessibility
	Glossary
	Error Messages
	Notices
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

